Abstract
Bit permutation based block ciphers, like PRESENT and GIFT, are well-known for their extreme lightweightness in hardware implementation. However, designing such ciphers comes with one major challenge – to ensure strong cryptographic properties simply depending on the combination of three components, namely S-box, a bit permutation and a key addition function. Having a wrong combination of components could lead to weaknesses. In this article, we studied the interaction between these components, improved the theoretical security bound of GIFT and highlighted the potential pitfalls associated with a bit permutation based primitive design. We also conducted analysis on TRIFLE, a first-round candidate for the NIST lightweight cryptography competition, where our findings influenced the elimination of TRIFLE from second-round of the NIST competition. In particular, we showed that internal state bits of TRIFLE can be partially decrypted for a few rounds even without any knowledge of the key.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this article we will use AES instead of Rijndael.
- 2.
Due to the page constraints, we omit the case-by-case analysis.
References
Banik, S., et al.: SUNDAE-GIFT, submission to NIST lightweight cryptography project (2019)
Banik, S., et al.: GIFT-COFB, submission to NIST lightweight cryptography project (2019)
Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16
Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against invariant attacks: how to choose the round constants. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 647–678. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_22
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_34
Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_18
Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31
Browning, K., Dillon, J., McQuistan, M., Wolfe, A.: An APN permutation in dimension six. Finite Fields Theory Appl. 518, 33–42 (2010)
Chakraborti, A., Datta, N., Jha, A., Nandi, M.: HyENA, submission to NIST lightweight cryptography project (2019)
Daemen, J., Rijmen, V.: AES and the wide trail design strategy. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 108–109. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_7
Daemen, J., Rijmen, V.: The design of Rijndael: AES - the advanced encryption standard. Information Security and Cryptography. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
Datta, N., Ghoshal, A., Mukhopadhyay, D., Patranabis, S., Picek, S., Sadhukhan, R.: TRIFLE, submission to NIST lightweight cryptography project (2019)
DES: Data encryption standard. In: In FIPS PUB 46, Federal Information Processing Standards Publication, pp. 46–52 (1977)
Gueron, S., Lindell, Y.: Simple, submission to NIST lightweight cryptography project (2019)
Guo, J., Jean, J., Nikolic, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant subspace attack against Midori64 and the resistance criteria for S-box designs. IACR Trans. Symmetric Cryptol. 2016(1), 33–56 (2016)
Gutiérrez, A.F.: Official comment: TRIFLE. Email to lwc-forum, July 6, 2019. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_12
Liu, F., Isobe, T.: Iterative differential characteristic of TRIFLE-BC. Cryptology ePrint Archive, Report 2019/727 (2019). https://eprint.iacr.org/2019/727
Liu, F., Isobe, T.: Iterative differential characteristic of TRIFLE-BC. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 85–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_4
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
NIST: round 1 of the NIST lightweight cryptography project (2019)
Sarkar, S.: Re: TRIFLE S-box has some structural weakness. Email to lwc-forum (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
Sarkar, S., Syed, H.: Bounds on differential and linear branch number of permutations. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 207–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_13
Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)
Sim, S.M.: Official comment: TRIFLE. Email to lwc-forum (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/official-comments/TRIFLE-official-comment.pdf
Turan, M.S., McKay, K., Çalik, Ç., Chang, D., Bassham, L.: Status report on the first round of the NIST lightweight cryptography standardization process. NISTIR 8268 (2019). https://csrc.nist.gov/publications/detail/nistir/8268/final
Zhang, W.T., Bao, Z.Z., Lin, D.D., Rijmen, V., Yang, B.H., Verbauwhede, I.: RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf. Sci. 58(12), 1–15 (2015). https://doi.org/10.1007/s11432-015-5459-7
Zhang, W., Bao, Z., Rijmen, V., Liu, M.: A new classification of 4-bit optimal S-boxes and its application to PRESENT, RECTANGLE and SPONGENT. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 494–515. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_24
Acknowledgements
The authors would like to thank Thomas Peyrin for the meaningful discussion on the study of TRIFLE-BC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sarkar, S., Sasaki, Y., Sim, S.M. (2020). On the Design of Bit Permutation Based Ciphers. In: Aoki, K., Kanaoka, A. (eds) Advances in Information and Computer Security. IWSEC 2020. Lecture Notes in Computer Science(), vol 12231. Springer, Cham. https://doi.org/10.1007/978-3-030-58208-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-58208-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58207-4
Online ISBN: 978-3-030-58208-1
eBook Packages: Computer ScienceComputer Science (R0)