Skip to main content

Efficient Forward-Secure Threshold Signatures

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12231))

Included in the following conference series:

  • 556 Accesses

Abstract

Forward-secure threshold signatures are useful to mitigate the damage of secret key exposure. Constructions based on bilinear pairings are particularly interesting because they achieve shorter signatures than RSA-based constructions.

We construct a forward-secure threshold signature scheme based on bilinear pairings. Compared to existing schemes, our scheme is much more efficient since it has a non-interactive key update and signing procedure. Additionally, our scheme does not require a trusted dealer and has optimal resilience as well as small signatures. Our scheme is the first one which achieves all of these and that can also be implemented on standardized curves.

We prove our scheme EUF-CMA secure against adaptive malicious adversaries. Our technical approach is a combination of the forward-secure single user signature scheme by Drijvers and Neven with a slightly modified version of the distributed key generation protocol by Gennaro et al. This modified version allows the participating parties to adjust their secret key shares in a forward secure way.

R. Kurek—Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement 802823, and by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901/3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term “non-interactive” stems from the fact that users are able to deliver valid signature shares without interacting with each other. The communication round we count here is still there.

  2. 2.

    An adaptive adversary can corrupt the parties at any time. A malicious adversary is allowed to divert from the protocol in any possible fashion.

  3. 3.

    A mobile adversary can switch between the parties it corrupts. For a proper overview see [1].

  4. 4.

    Note that this case is only possible for time periods \(t> 0\), i.e. after KeyGen had finished. Else, the adversary would have no way to win the security experiment.

  5. 5.

    For comparison of the concrete sizes we refer to the common recommendations: https://www.keylength.com/.

References

  1. Abdalla, M., Miner, S., Namprempre, C.: Forward-secure threshold signature schemes. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 441–456. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_32

    Chapter  Google Scholar 

  2. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_10

    Chapter  Google Scholar 

  3. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_28

    Chapter  Google Scholar 

  4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS 1993, New York, NY, USA, pp. 62–73. ACM (1993)

    Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC (1988)

    Google Scholar 

  6. Boyd, C.: Digital multisignatures. In: Cryptography and Coding, pp. 241–246 (1986)

    Google Scholar 

  7. Chow, S.S.M., Go, H.W., Hui, L.C.K., Yiu, S.-M.: Multiplicative forward-secure threshold signature scheme. Int. J. Netw. Secur. 7, 397–403 (2008)

    Google Scholar 

  8. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_28

    Chapter  Google Scholar 

  9. Drijvers, M., Neven, G.: Forward-secure multi-signatures. Cryptology ePrint Archive, Report 2019/261 (2019). http://eprint.iacr.org/2019/261

  10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20, 51–83 (2007). https://doi.org/10.1007/s00145-006-0347-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical” indentity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_16

    Chapter  Google Scholar 

  12. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public key and signature systems. In: Proceedings of the ACM Conference on Computer and Communications Security, January 1997

    Google Scholar 

  13. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_27

    Chapter  Google Scholar 

  14. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In: Proceedings of the 7th ACM Conference on Computer and Communications Security, CCS 2000, New York, NY, USA, pp. 108–115. ACM (2000)

    Google Scholar 

  15. Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed non-interactive adaptively-secure threshold signatures with short shares. Theor. Comput. Sci. 645, 1–24 (2016)

    Article  MathSciNet  Google Scholar 

  16. Libert, B., Yung, M.: Adaptively secure non-interactive threshold cryptosystems. Theor. Comput. Sci. 478, 76–100 (2013)

    Article  MathSciNet  Google Scholar 

  17. Liu, L.-S., Chu, C.-K., Tzeng, W.-G.: A threshold GQ signature scheme. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 137–150. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4_11

    Chapter  Google Scholar 

  18. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended abstract). In: Proceedings of the Tenth Annual ACM Symposium on Principles of Distributed Computing, PODC 1991, New York, NY, USA, pp. 51–59. ACM (1991)

    Google Scholar 

  19. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  20. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

    Chapter  Google Scholar 

  21. Tzeng, W.-G., Tzeng, Z.-J.: Robust forward-secure signature schemes with proactive security. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 264–276. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_19

    Chapter  MATH  Google Scholar 

  22. Wang, H., Qiu, G., Feng, D., Xiao, G.-Z.: Cryptanalysis of Tzeng-Tzeng forward-secure signature schemes. IEICE Trans. 89-A, 822–825 (2006)

    Google Scholar 

  23. Yu, J., Kong, F.: Forward secure threshold signature scheme from bilinear pairings. In: Wang, Y., Cheung, Y., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp. 587–597. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74377-4_61

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Kurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurek, R. (2020). Efficient Forward-Secure Threshold Signatures. In: Aoki, K., Kanaoka, A. (eds) Advances in Information and Computer Security. IWSEC 2020. Lecture Notes in Computer Science(), vol 12231. Springer, Cham. https://doi.org/10.1007/978-3-030-58208-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58208-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58207-4

  • Online ISBN: 978-3-030-58208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics