Skip to main content

Dynamic Channel and Layer Gating in Convolutional Neural Networks

  • Conference paper
  • First Online:
KI 2020: Advances in Artificial Intelligence (KI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12325))

Included in the following conference series:

Abstract

Convolutional neural networks (CNN) are getting more and more complex, needing enormous computing resources and energy. In this paper, we propose methods for conditional computation in the context of image classification that allows a CNN to dynamically use its channels and layers conditioned on the input. To this end, we combine light-weight gating modules that can make binary decisions without causing much computational overhead. We argue, that combining the recently proposed channel gating mechanism with layer gating can significantly reduce the computational cost of large CNNs. Using discrete optimization algorithms, the gating modules are made aware of the context in which they are used and decide whether a particular channel and/or a particular layer will be executed. This results in neural networks that adapt their own topology conditioned on the input image. Experiments using the CIFAR10 and MNIST datasets show how competitive results in image classification with respect to accuracy can be achieved while saving up to 50% computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almahairi, A., Ballas, N., Cooijmans, T., Zheng, Y., Larochelle, H., Courville, A.: Dynamic capacity networks. In: International Conference on Machine Learning, pp. 2549–2558 (2016)

    Google Scholar 

  2. Bejnordi, B.E., Blankevoort, T., Welling, M.: Batch-shaping for learning conditional channel gated networks. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=Bke89JBtvB

  3. Bengio, E., Bacon, P.L., Pineau, J., Precup, D.: Conditional computation in neural networks for faster models. arXiv preprint arXiv:1511.06297 (2015)

  4. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  5. Chen, Z., Li, Y., Bengio, S., Si, S.: You look twice: Gaternet for dynamic filter selection in CNNs. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  6. Gao, X., Zhao, Y., Dudziak, Ł., Mullins, R., Xu, C.-Z: Dynamic channel pruning: Feature boosting and suppression. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=BJxh2j0qYm

  7. Gumbel, E.J.: Statistical theory of extreme values and some practical applications. NBS Appl. Math. Ser. 33 (1954)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E., et al.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  12. Kaiser, Ł., Bengio, S.: Discrete autoencoders for sequence models. arXiv preprint arXiv:1801.09797 (2018)

  13. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  17. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  18. Veit, A., Belongie, S.: Convolutional networks with adaptive inference graphs. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–18 (2018)

    Google Scholar 

  19. Veit, A., Wilber, M., Belongie, S.: Residual networks behave like ensembles of relatively shallow networks. Conference on Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  20. Wang, X., Yu, F., Dou, Z.-Y., Darrell, T., Gonzalez, J.E.: SkipNet: Learning dynamic routing in convolutional networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 420–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ehteshami Bejnordi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ehteshami Bejnordi, A., Krestel, R. (2020). Dynamic Channel and Layer Gating in Convolutional Neural Networks. In: Schmid, U., Klügl, F., Wolter, D. (eds) KI 2020: Advances in Artificial Intelligence. KI 2020. Lecture Notes in Computer Science(), vol 12325. Springer, Cham. https://doi.org/10.1007/978-3-030-58285-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58285-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58284-5

  • Online ISBN: 978-3-030-58285-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics