Skip to main content

Using Siamese Graph Neural Networks for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2020)

Abstract

Similarity-based retrieval of semantic graphs is widely used in real-world scenarios, e. g., in the domain of business workflows. To tackle the problem of complex and time-consuming graph similarity computations during retrieval, the MAC/FAC approach is used in Process-Oriented Case-Based Reasoning (POCBR), where similar graphs are extracted from a preselected set of candidate graphs. These graphs result from a similarity computation with a computationally inexpensive similarity measure. The contribution of this paper is a novel similarity measure where vector space embeddings generated by two siamese Graph Neural Networks (GNNs) are used to approximate the similarities of a precise but therefore computationally complex graph similarity measure. Our approach includes a specific encoding scheme for semantic graphs that enables their usage in neural networks. The evaluation examines the quality and performance of these models in preselecting retrieval candidates and in approximating the ground-truth similarities of the graph similarity measure for two workflow domains. The results show great potential of the approach for being used in a MAC/FAC scenario, either as a preselection model or as an approximation of the graph similarity measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://procake.uni-trier.de.

  2. 2.

    https://github.com/deepmind/deepmind-research/tree/master/graph_matching_networks.

  3. 3.

    https://tensorflow.org/.

  4. 4.

    https://rapidminer.com/.

  5. 5.

    https://www.tensorflow.org/neural_structured_learning.

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467 (2016)

    Google Scholar 

  2. Bai, Y., et al.: SimGNN: a neural network approach to fast graph similarity computation. In: Culpepper, J.S., Moffat, A., Bennett, P.N., Lerman, K. (eds.) Proceedings of the 12th ACM International Conference on Web Search and Data Mining 2019, Australia, pp. 384–392. ACM (2019)

    Google Scholar 

  3. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)

    Article  Google Scholar 

  4. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: a process-oriented case-based reasoning framework. In: Kapetanakis, S., Borck, H. (eds.) Workshops Proceedings for the 27th International Conference on Case-Based Reason. Research and Deviation. CEUR Workshop Proceedings, vol. 2567, pp. 156–161. CEUR-WS.org (2019)

    Google Scholar 

  5. Bergmann, R., Stromer, A.: MAC/FAC retrieval of semantic workflows. In: Boonthum-Denecke, C., Youngblood, G.M. (eds.) Proceedings of the 26th International Florida Artificial Intelligent Research Society Conference on AAAI Press (2013)

    Google Scholar 

  6. Cheng, W., Rademaker, M., De Baets, B., Hüllermeier, E.: Predicting partial orders: ranking with abstention. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 215–230. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_20

    Chapter  Google Scholar 

  7. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Qatar. pp. 1724–1734. ACL (2014)

    Google Scholar 

  8. Dumas, M., van de Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Systems: Bridging People and Software Through Process Technology. Wiley, New York (2005)

    Book  Google Scholar 

  9. Forbus, K.D., Gentner, D., Law, K.: MAC/FAC: a model of similarity-based retrieval. Cogn. Sci. 19(2), 141–205 (1995)

    Article  Google Scholar 

  10. Keane, M.T., Kenny, E.M.: How case-based reasoning explains neural networks: a theoretical analysis of XAI using Post-Hoc explanation-by-example from a survey of ANN-CBR twin-systems. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 155–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_11

    Chapter  Google Scholar 

  11. Kendall-Morwick, J., Leake, D.B.: A study of two-phase retrieval for process-oriented case-based reasoning. In: Montani, S., Jain, L. (eds.) Successful Case-based Reasoning Applications-2, pp. 7–27. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-38736-4_2

  12. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR, USA, p. 2015. Track Proceedings Conference (2015)

    Google Scholar 

  13. Klein, P., Malburg, L., Bergmann, R.: Learning workflow embeddings to improve the performance of similarity-based retrieval for process-oriented case-based reasoning. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 188–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_13

    Chapter  Google Scholar 

  14. Lenz, M., Ollinger, S., Sahitaj, P., Bergmann, R.: Semantic textual similarity measures for case-based retrieval of argument graphs. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 219–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_15

    Chapter  Google Scholar 

  15. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conf. on Machine Learning, ICML 2019, USA. Proceedings of Machine Learning Research, vol. 97, pp. 3835–3845. PMLR (2019)

    Google Scholar 

  16. Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based Reasoning. Inf. Syst. 40, 103–105 (2014)

    Article  Google Scholar 

  17. Mougouie, B., Bergmann, R.: Similarity assessment for generalizied cases by optimization methods. In: Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 249–263. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46119-1_19

    Chapter  Google Scholar 

  18. Müller, G., Bergmann, R.: A cluster-based approach to improve similarity-based retrieval for process-oriented case-based reasoning. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014–21st European Conference on Artificial Intelligence, pp. 639–644. IOS Press (2014)

    Google Scholar 

  19. Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-23559-8

    Book  Google Scholar 

  20. Ontañón, S.: An overview of distance and similarity functions for structured data. Artif. Intell. Rev. pp. 1–43 (2020). https://doi.org/10.1007/s10462-020-09821-w

  21. Richter, M.M.: Foundations of similarity and utility. In: Wilson, D., Sutcliffe, G. (eds.) Proceedings of the 20th International Florida Artificial Intelligent Research Society Conference, pp. 30–37. AAAI Press (2007)

    Google Scholar 

  22. Socher, R., Lin, C.C., Ng, A.Y., Manning, C.D.: Parsing natural scenes and natural language with recursive neural networks. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning, ICML 2011, USA, pp. 129–136. Omnipress (2011)

    Google Scholar 

  23. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014)

    Google Scholar 

  24. Tai, K.S., Socher, R., Manning, C.D.: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. In: Proceedings of the 53rd Annual Meeting of the Assoc. for Computer Linguist. and the 7th International Joint Conference on NLP of the Asian Federation, pp. 1556–1566. The Association for Computer Linguistics (2015)

    Google Scholar 

  25. Taylor, M.J., Guiver, J., Robertson, S., Minka, T.: SoftRank: optimizing non-smooth rank metrics. In: Najork, M., Broder, A.Z., Chakrabarti, S. (eds.) Proceedings of the International Conference on Web Search and Web Data Mining, WSDM 2008, USA, pp. 77–86. ACM (2008)

    Google Scholar 

  26. Wu, L.Y., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: StarSpace: Embed All The Things! In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the 32nd AAAI Conference on Artifical Intelligent, USA, 2018, pp. 5569–5577. AAAI Press (2018)

    Google Scholar 

  27. Zeyen, C., Bergmann, R.: A*-based similarity assessment of semantic graphs. In: Watson, I., Weber, R. (eds.) ICCBR 2020, LNAI 12311, pp. 3–18. Springer, Cham (2020)

    Google Scholar 

  28. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of scientific workflows by means of process-oriented case-based reasoning. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 388–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_26

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is funded by the German Research Foundation (DFG) under grant No. BE 1373/3-3 and grant No. 375342983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, M., Malburg, L., Klein, P., Bergmann, R. (2020). Using Siamese Graph Neural Networks for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Watson, I., Weber, R. (eds) Case-Based Reasoning Research and Development. ICCBR 2020. Lecture Notes in Computer Science(), vol 12311. Springer, Cham. https://doi.org/10.1007/978-3-030-58342-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58342-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58341-5

  • Online ISBN: 978-3-030-58342-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics