Abstract
Similarity-based retrieval of semantic graphs is widely used in real-world scenarios, e. g., in the domain of business workflows. To tackle the problem of complex and time-consuming graph similarity computations during retrieval, the MAC/FAC approach is used in Process-Oriented Case-Based Reasoning (POCBR), where similar graphs are extracted from a preselected set of candidate graphs. These graphs result from a similarity computation with a computationally inexpensive similarity measure. The contribution of this paper is a novel similarity measure where vector space embeddings generated by two siamese Graph Neural Networks (GNNs) are used to approximate the similarities of a precise but therefore computationally complex graph similarity measure. Our approach includes a specific encoding scheme for semantic graphs that enables their usage in neural networks. The evaluation examines the quality and performance of these models in preselecting retrieval candidates and in approximating the ground-truth similarities of the graph similarity measure for two workflow domains. The results show great potential of the approach for being used in a MAC/FAC scenario, either as a preselection model or as an approximation of the graph similarity measure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467 (2016)
Bai, Y., et al.: SimGNN: a neural network approach to fast graph similarity computation. In: Culpepper, J.S., Moffat, A., Bennett, P.N., Lerman, K. (eds.) Proceedings of the 12th ACM International Conference on Web Search and Data Mining 2019, Australia, pp. 384–392. ACM (2019)
Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)
Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: a process-oriented case-based reasoning framework. In: Kapetanakis, S., Borck, H. (eds.) Workshops Proceedings for the 27th International Conference on Case-Based Reason. Research and Deviation. CEUR Workshop Proceedings, vol. 2567, pp. 156–161. CEUR-WS.org (2019)
Bergmann, R., Stromer, A.: MAC/FAC retrieval of semantic workflows. In: Boonthum-Denecke, C., Youngblood, G.M. (eds.) Proceedings of the 26th International Florida Artificial Intelligent Research Society Conference on AAAI Press (2013)
Cheng, W., Rademaker, M., De Baets, B., Hüllermeier, E.: Predicting partial orders: ranking with abstention. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6321, pp. 215–230. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15880-3_20
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Qatar. pp. 1724–1734. ACL (2014)
Dumas, M., van de Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Systems: Bridging People and Software Through Process Technology. Wiley, New York (2005)
Forbus, K.D., Gentner, D., Law, K.: MAC/FAC: a model of similarity-based retrieval. Cogn. Sci. 19(2), 141–205 (1995)
Keane, M.T., Kenny, E.M.: How case-based reasoning explains neural networks: a theoretical analysis of XAI using Post-Hoc explanation-by-example from a survey of ANN-CBR twin-systems. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 155–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_11
Kendall-Morwick, J., Leake, D.B.: A study of two-phase retrieval for process-oriented case-based reasoning. In: Montani, S., Jain, L. (eds.) Successful Case-based Reasoning Applications-2, pp. 7–27. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-38736-4_2
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR, USA, p. 2015. Track Proceedings Conference (2015)
Klein, P., Malburg, L., Bergmann, R.: Learning workflow embeddings to improve the performance of similarity-based retrieval for process-oriented case-based reasoning. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 188–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_13
Lenz, M., Ollinger, S., Sahitaj, P., Bergmann, R.: Semantic textual similarity measures for case-based retrieval of argument graphs. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 219–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_15
Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conf. on Machine Learning, ICML 2019, USA. Proceedings of Machine Learning Research, vol. 97, pp. 3835–3845. PMLR (2019)
Minor, M., Montani, S., Recio-García, J.A.: Process-oriented case-based Reasoning. Inf. Syst. 40, 103–105 (2014)
Mougouie, B., Bergmann, R.: Similarity assessment for generalizied cases by optimization methods. In: Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 249–263. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46119-1_19
Müller, G., Bergmann, R.: A cluster-based approach to improve similarity-based retrieval for process-oriented case-based reasoning. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014–21st European Conference on Artificial Intelligence, pp. 639–644. IOS Press (2014)
Müller, G.: Workflow Modeling Assistance by Case-based Reasoning. Springer, Wiesbaden (2018). https://doi.org/10.1007/978-3-658-23559-8
Ontañón, S.: An overview of distance and similarity functions for structured data. Artif. Intell. Rev. pp. 1–43 (2020). https://doi.org/10.1007/s10462-020-09821-w
Richter, M.M.: Foundations of similarity and utility. In: Wilson, D., Sutcliffe, G. (eds.) Proceedings of the 20th International Florida Artificial Intelligent Research Society Conference, pp. 30–37. AAAI Press (2007)
Socher, R., Lin, C.C., Ng, A.Y., Manning, C.D.: Parsing natural scenes and natural language with recursive neural networks. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning, ICML 2011, USA, pp. 129–136. Omnipress (2011)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27, 3104–3112 (2014)
Tai, K.S., Socher, R., Manning, C.D.: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. In: Proceedings of the 53rd Annual Meeting of the Assoc. for Computer Linguist. and the 7th International Joint Conference on NLP of the Asian Federation, pp. 1556–1566. The Association for Computer Linguistics (2015)
Taylor, M.J., Guiver, J., Robertson, S., Minka, T.: SoftRank: optimizing non-smooth rank metrics. In: Najork, M., Broder, A.Z., Chakrabarti, S. (eds.) Proceedings of the International Conference on Web Search and Web Data Mining, WSDM 2008, USA, pp. 77–86. ACM (2008)
Wu, L.Y., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: StarSpace: Embed All The Things! In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the 32nd AAAI Conference on Artifical Intelligent, USA, 2018, pp. 5569–5577. AAAI Press (2018)
Zeyen, C., Bergmann, R.: A*-based similarity assessment of semantic graphs. In: Watson, I., Weber, R. (eds.) ICCBR 2020, LNAI 12311, pp. 3–18. Springer, Cham (2020)
Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of scientific workflows by means of process-oriented case-based reasoning. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 388–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_26
Acknowledgments
This work is funded by the German Research Foundation (DFG) under grant No. BE 1373/3-3 and grant No. 375342983.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hoffmann, M., Malburg, L., Klein, P., Bergmann, R. (2020). Using Siamese Graph Neural Networks for Similarity-Based Retrieval in Process-Oriented Case-Based Reasoning. In: Watson, I., Weber, R. (eds) Case-Based Reasoning Research and Development. ICCBR 2020. Lecture Notes in Computer Science(), vol 12311. Springer, Cham. https://doi.org/10.1007/978-3-030-58342-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-58342-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58341-5
Online ISBN: 978-3-030-58342-2
eBook Packages: Computer ScienceComputer Science (R0)