Skip to main content

A Formal Learning Theory for Three-Way Clustering

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12322))

Included in the following conference series:

Abstract

In this work, we study the theoretical properties, from the perspective of learning theory, of three-way clustering and related formalisms, such as rough clustering or interval-valued clustering. In particular, we generalize to this setting recent axiomatic characterization results that have been discussed for classical hard clustering. After proposing an axiom system for three-way clustering, which we argue is a compatible weakening of the traditional hard clustering one, we provide a constructive proof of an existence theorem, that is, we show an algorithm which satisfies the proposed axioms. We also propose an axiomatic characterization of the three-way k-means algorithm family and draw comparisons between the two approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afridi, M.K., Azam, N., Yao, J.: Variance based three-way clustering approaches for handling overlapping clustering. Int. J. Approximate Reasoning 118, 47–63 (2020)

    Article  MathSciNet  Google Scholar 

  2. Ben-David, S., Ackerman, M.: Measures of clustering quality: A working set of axioms for clustering. Proc. NIPS 2009, 121–128 (2009)

    Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: The fuzzy c-means clustering algorithm. Comput. Geosci. 10(2), 191–203 (1984)

    Article  Google Scholar 

  4. Campagner, A., Ciucci, D.: Orthopartitions and soft clustering: Soft mutual information measures for clustering validation. Knowl. Based Syst. 180, 51–61 (2019)

    Article  Google Scholar 

  5. Chen, D., Cui, D.W., Wang, C.X., Wang, Z.R.: A rough set-based hierarchical clustering algorithm for categorical data. Int. J. Inf. Technol. 12(3), 149–159 (2006)

    Google Scholar 

  6. Dasgupta, S.: The hardness of k-means clustering. Department of Computer Science and Engineering, University of California, San Diego, Technical report (2008)

    Google Scholar 

  7. Denœux, T., Kanjanatarakul, O.: Beyond fuzzy, possibilistic and rough: An investigation of belief functions in clustering. In: Ferraro, M.B., Giordani, P., Vantaggi, B., Gagolewski, M., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Data Science. AISC, vol. 456, pp. 157–164. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42972-4_20

    Chapter  Google Scholar 

  8. Denœux, T., Masson, M.H.: Evclus: Evidential clustering of proximity data. IEEE Trans. Syst. Man Cybern. 34(1), 95–109 (2004)

    Article  Google Scholar 

  9. Kameshwaran, K., Malarvizhi, K.: Survey on clustering techniques in data mining. IJCSIT 5(2), 2272–2276 (2014)

    Google Scholar 

  10. Kleinberg, J.M.: An impossibility theorem for clustering. Pro. NIPS 2003, 463–470 (2003)

    Google Scholar 

  11. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1(6), 90–95 (2013)

    Google Scholar 

  12. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  13. Lingras, P., Peters, G.: Rough clustering. WIREs Data Min. Knowl. Discov. 1, 65–72 (2011)

    Google Scholar 

  14. Lingras, P.: Evolutionary rough K-means clustering. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 68–75. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02962-2_9

    Chapter  Google Scholar 

  15. Lingras, P., West, C.: Interval set clustering of web users with rough k-means. J. Intell. Inf. Syst. 23(1), 5–16 (2004)

    Article  Google Scholar 

  16. Loh, W.K., Park, Y.H.: A survey on density-based clustering algorithms. In: Ubiquitous Information Technologies and Applications, pp. 775–780. Springer, Berlin (2014)

    Google Scholar 

  17. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, New York (2002)

    Google Scholar 

  18. Mitra, S., Pedrycz, W., Barman, B.: Shadowed c-means: Integrating fuzzy and rough clustering. Pattern Recogn. 43(4), 1282–1291 (2010)

    Article  Google Scholar 

  19. Murugesan, V.P., Murugesan, P.: A new initialization and performance measure for the rough k-means clustering. Soft Comput. 1–15 (2020)

    Google Scholar 

  20. Pedrycz, W.: Interpretation of clusters in the framework of shadowed sets. Pattern Recogn. Lett. 26(15), 2439–2449 (2005)

    Article  Google Scholar 

  21. Peters, G.: Some refinements of rough k-means clustering. Pattern Recogn. 39(8), 1481–1491 (2006)

    Article  Google Scholar 

  22. Peters, G.: Rough clustering utilizing the principle of indifference. Inf. Sci. 277, 358–374 (2014)

    Article  MathSciNet  Google Scholar 

  23. Peters, G., Crespo, F., Lingras, P., Weber, R.: Soft clustering-fuzzy and rough approaches and their extensions and derivatives. Int. J. Approximate Reason. 54(2), 307–322 (2013)

    Article  MathSciNet  Google Scholar 

  24. Reddy, C.K., Vinzamuri, B.: A survey of partitional and hierarchical clustering algorithms. In: Data Clustering, pp. 87–110. Chapman and Hall/CRC (2018)

    Google Scholar 

  25. Selim, S.Z., Ismail, M.A.: K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 1, 81–87 (1984)

    Article  Google Scholar 

  26. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  27. Vijendra, S.: Efficient clustering for high dimensional data: Subspace based clustering and density based clustering. Inf. Technol. J. 10(6), 1092–1105 (2011)

    Article  Google Scholar 

  28. Wang, P., Shi, H., Yang, X., Mi, J.: Three-way k-means: Integrating k-means and three-way decision. Int. J. Mach. Learn. Cybern. 10(10), 2767–2777 (2019). https://doi.org/10.1007/s13042-018-0901-y

    Article  Google Scholar 

  29. Wang, P., Yao, Y.: Ce3: A three-way clustering method based on mathematical morphology. Knowl. Based Syst. 155, 54–65 (2018)

    Article  Google Scholar 

  30. Xu, R., Wunsch, D.: Clustering, vol. 10. Wiley, Hoboken (2008)

    Book  Google Scholar 

  31. Yao, Y., Lingras, P., Wang, R., Miao, D.: Interval set cluster analysis: a re-formulation. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 398–405. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10646-0_48

    Chapter  Google Scholar 

  32. Yu, H.: A framework of three-way cluster analysis. In: Polkowski, L., Yao, Y., Artiemjew, P., Ciucci, D., Liu, D., Ślęzak, D., Zielosko, B. (eds.) IJCRS 2017. LNCS (LNAI), vol. 10314, pp. 300–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_22

    Chapter  Google Scholar 

  33. Yu, H., Chang, Z., Wang, G., Chen, X.: An efficient three-way clustering algorithm based on gravitational search. Int. J. Mach. Learn. Cybern. 11(5), 1003–1016 (2019). https://doi.org/10.1007/s13042-019-00988-5

    Article  Google Scholar 

  34. Yu, H., Chen, L., Yao, J., Wang, X.: A three-way clustering method based on an improved dbscan algorithm. Physica A Stat. Mech. Appl. 535, 122289 (2019)

    Article  Google Scholar 

  35. Zadeh, R.B., Ben-David, S.: A uniqueness theorem for clustering. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 639–646 (2009)

    Google Scholar 

  36. Zhang, K.: A three-way c-means algorithm. Appl. Soft Comput. 82, 105536 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Campagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campagner, A., Ciucci, D. (2020). A Formal Learning Theory for Three-Way Clustering. In: Davis, J., Tabia, K. (eds) Scalable Uncertainty Management. SUM 2020. Lecture Notes in Computer Science(), vol 12322. Springer, Cham. https://doi.org/10.1007/978-3-030-58449-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58449-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58448-1

  • Online ISBN: 978-3-030-58449-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics