Skip to main content

State of the Art of Non-vision-Based Localization Technologies for AR in Facility Management

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2020)

Abstract

Augmented reality (AR) applications for indoor purpose mostly use vision-based localization systems. However, even with AI-based algorithms, reachable accuracies are quite low. In the field of facility management an important functionality is the possibility to go for a high localization accuracy to display information, warnings or instructions at the correct position, if necessary. Simple vision-based solutions, like QR codes, are widely used. However, they show a high effort during installation and the advantages of using AR are limited. Thus, a state-of-the-art review for non-vision-based indoor localization technologies was carried out. Moreover, an evaluation with respect to usability for augmented reality applications was done. A scenario of the application of AR in the facility management environment is described based on the review results. For use-cases with high accuracy, tracking systems like infrared-based camera systems are a preferable solution. Also, ultrasonic could be a cheap solution for a medium accuracy tracking. For a simple room-based localization Bluetooth beacons and other hybrid indoor position technologies are preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarifi, A., et al.: Ultra wideband indoor positioning technologies: analysis and recent advances. Sensors 16, 707 (2016)

    Google Scholar 

  • Amutha, B., Nanmaran, K.: Development of a ZigBee based virtual eye for visually impaired persons. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Presented at the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, South Korea, pp. 564–574. IEEE (2014)

    Google Scholar 

  • Bai, Y.B., Wu, S., Wu, H.R., Zhang, K.: Overview of RFID-based indoor positioning technology. In: GSR (2012)

    Google Scholar 

  • Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: a survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Commun. 30, 1655–1695 (2007)

    Google Scholar 

  • Bartoletti, S., Conti, A., Dardari, D., Giorgetti, A.: 5G Localization and Context-Awareness. Whitepaper (2019)

    Google Scholar 

  • Bhattarai, B., Hwang, S.-S., Pyun, J.-Y.: An efficient geomagnetic indoor positioning system using smartphones. In: 3rd International Conference on Next Generation Computing (ICNGC2017b), Taiwan (2018)

    Google Scholar 

  • Bouet, M., dos Santos, A.L.: RFID tags: positioning principles and localization techniques. In: 2008 1st IFIP Wireless Days. Presented at the 2008 1st IFIP Wireless Days, pp. 1–5 (2008)

    Google Scholar 

  • Castillo-Cara, M., Lovón, J., Rocca, G., Orozco-Barbosa, L., García-Varea, I.: An empirical study of the transmission power setting for Bluetooth-based indoor localization mechanisms. Sensors 17, 1318 (2017)

    Google Scholar 

  • Chen, X.Q., Alfadhl, Y., Chai, K.K.: An indoor item finder with active RFID tags. In: IET International Conference on Communication Technology and Application (ICCTA 2011), Beijing, China (2011)

    Google Scholar 

  • Chon, H.D., Jun, S.-B., Jung, H., An, S.W.: Using RFID for accurate positioning. J. Glob. Position. Syst. 3, 32–39 (2004)

    Google Scholar 

  • Cirulis, A.: Ultra wideband tracking potential for augmented reality environments. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2019. LNCS, vol. 11614, pp. 126–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25999-0_11

    Chapter  Google Scholar 

  • Cook, B.S., et al.: RFID-based sensors for zero-power autonomous wireless sensor networks. IEEE Sens. J. 14, 2419–2431 (2014)

    Google Scholar 

  • Coronel, P., Furrer, S., Schott, W., Weiss, B.: Indoor location tracking using inertial navigation sensors and radio beacons. In: Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.) IOT 2008. LNCS, vol. 4952, pp. 325–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78731-0_21

    Chapter  Google Scholar 

  • De Angelis, A., et al.: Design and characterization of a portable ultrasonic indoor 3-D positioning system. IEEE Trans. Instrum. Meas. 64, 2616–2625 (2015a)

    Google Scholar 

  • De Angelis, G., et al.: An indoor AC magnetic positioning system. IEEE Trans. Instrum. Meas. 64, 1267–1275 (2015b)

    Google Scholar 

  • Faragher, R., Harle, R.K.: An analysis of the accuracy of Bluetooth low energy for indoor positioning applications. In: Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014). Presented at the International Technical Meeting of the Satellite Division of the Institute of Navigation, Tampa, Florida, pp. 201–210 (2014)

    Google Scholar 

  • Farid, Z., Nordin, R., Ismail, M.: Recent advances in wireless indoor localization techniques and system. J. Comput. Netw. Commun. 2013, 185138:1–185138:12 (2013). [WWW Document]

    Google Scholar 

  • Foerster, J., Green, E., Somayazulu, S., Leeper, D.: Ultra-wideband technology for short- or medium-range wireless communications. Intel Technol. J. Q2, 11 (2001)

    Google Scholar 

  • Fu, W., Peng, A., Tang, B., Zheng, L.: Inertial sensor aided visual indoor positioning. In: 2018 International Conference on Electronics Technology (ICET). Presented at the 2018 International Conference on Electronics Technology (ICET), Chengdu, pp. 106–110. IEEE (2018)

    Google Scholar 

  • Gan, X., Yu, B., Heng, Z., Huang, L.: Indoor positioning technology of Beidou/GPS pseudolites correction PDR. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN), vol. 4 (2017)

    Google Scholar 

  • Gjengset, J., Xiong, J., McPhillips, G., Jamieson, K.: Phaser: enabling phased array signal processing on commodity WiFi access points. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking - MobiCom ’14. Presented at the 20th Annual International Conference, Maui, Hawaii, USA, pp. 153–164. ACM Press (2014)

    Google Scholar 

  • Hazas, M., Hopper, A.: Broadband ultrasonic location systems for improved indoor positioning. IEEE Trans. Mob. Comput. 5, 536–547 (2006)

    Google Scholar 

  • House, S., Connell, S., Milligan, I., Austin, D., Hayes, T.L., Chiang, P.: Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7598–7601 (2011)

    Google Scholar 

  • Ijaz, F., Yang, H.K., Ahmad, A.W., Lee, C.: Indoor positioning: a review of indoor ultrasonic positioning systems. In: 2013 15th International Conference on Advanced Communications Technology (ICACT). Presented at the 2013 15th International Conference on Advanced Communications Technology (ICACT), pp. 1146–1150 (2013)

    Google Scholar 

  • Ingram, S.J., Harmer, D., Quinlan, M.: UltraWideBand indoor positioning systems and their use in emergencies, In: Position Location and Navigation Symposium (IEEE Cat. No. 04CH37556), PLANS 2004. Presented at the PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556), pp. 706–715 (2004)

    Google Scholar 

  • Islim, M.S., Haas, H.: Modulation techniques for Li-Fi. ZTE Commun. 14, 29–40 (2016)

    Google Scholar 

  • Januszkiewicz, Ł., Kawecki, J., Kawecki, R., Oleksy, P.: Wireless indoor positioning system with inertial sensors and infrared beacons. In: 2016 10th European Conference on Antennas and Propagation (EuCAP). Presented at the 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–3 (2016)

    Google Scholar 

  • Kang, W., Han, Y.: SmartPDR: smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sens. J. 15, 2906–2916 (2015)

    Google Scholar 

  • Kanwar, A., Khazanchi, A.: ZigBee the new bluetooth technology. Int. J. Eng. Comput. Sci. 1(2), 67–74 (2012)

    Google Scholar 

  • Kaur, M., Sandhu, M., Mohan, N., Sandhu, P.: RFID technology principles, advantages, limitations & its applications. Int. J. Comput. Electr. Eng. 3, 151–157 (2011)

    Google Scholar 

  • Khan, M.A., Antiwal, V.K.: Location estimation technique using extended 3-D LANDMARC algorithm for passive RFID tag. In: 2009 IEEE International Advance Computing Conference. Presented at the 2009 IEEE International Advance Computing Conference, pp. 249–253 (2009)

    Google Scholar 

  • Kim, C., So, H., Lee, T., Kee, C.: A pseudolite-based positioning system for legacy GNSS receivers. Sens. Switz. 14, 6104–6123 (2014)

    Google Scholar 

  • Kuang, J., Niu, X., Zhang, P., Chen, X.: Indoor positioning based on pedestrian dead reckoning and magnetic field matching for smartphones. Sensors 18, 4142 (2018)

    Google Scholar 

  • Kumar, S., Gil, S., Katabi, D., Rus, D.: Accurate indoor localization with zero start-up cost. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking - MobiCom ’14. Presented at the 20th Annual International Conference, Maui, Hawaii, USA, pp. 483–494. ACM Press (2014)

    Google Scholar 

  • Larranaga, J., Muguira, L., Lopez-Garde, J.-M., Vazquez, J.-I.: An environment adaptive ZigBee-based indoor positioning algorithm. In: 2010 International Conference on Indoor Positioning and Indoor Navigation. Presented at the 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, pp. 1–8. IEEE (2010)

    Google Scholar 

  • Lee, N., Ahn, S., Han, D.: AMID: accurate magnetic indoor localization using deep learning. Sensors 18, 1598 (2018)

    Google Scholar 

  • Lehtimäki, S.: Bluetooth Angle Estimation for Real-Time Locationing. Silicon Labs (2019). [WWW Document]. https://www.silabs.com/whitepapers/bluetooth-angle-estimation-for-real-time-locationing. Accessed 1 July 2020

  • Li, W., Wu, J., Wang, D.: A novel indoor positioning method based on key reference RFID tags. In: Computing and Telecommunication 2009 IEEE Youth Conference on Information. Presented at the Computing and Telecommunication, pp. 42–45 (2009)

    Google Scholar 

  • Li, X., Huang, G., Zhang, P., Zhang, Q.: Reliable indoor pseudolite positioning based on a robust estimation and partial ambiguity resolution method. Sensors 19, 3692 (2019)

    Google Scholar 

  • Li, Y.-S., Ning, F.-S.: Low-cost indoor positioning application based on map assistance and mobile phone sensors. Sensors 18, 4285 (2018)

    Google Scholar 

  • Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37, 1067–1080 (2007)

    Google Scholar 

  • Magnago, V., et al.: Robot localisation based on phase measures of backscattered UHF-RFID signals. In: 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Presented at the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 2019

    Google Scholar 

  • Mazuelas, S., et al.: Robust indoor positioning provided by real-time RSSI values in unmodified WLAN Networks. IEEE J. Sel. Top. Sig. Process. 3, 821–831 (2009)

    Google Scholar 

  • Mendoza-Silva, G.M., Torres-Sospedra, J., Huerta, J.: A meta-review of indoor positioning systems. Sensors 19, 4507 (2019)

    Google Scholar 

  • Mrindoko, N.R., Minga, D.L.M.: A comparison review of indoor positioning techniques. Int. J. Comput. 21, 9 (2016)

    Google Scholar 

  • Oguntala, G., Abd-Alhameed, R., Jones, S., Noras, J., Patwary, M., Rodriguez, J.: Indoor location identification technologies for real-time IoT-based applications: an inclusive survey. Comput. Sci. Rev. 30, 55–79 (2018)

    Google Scholar 

  • Oppermann, I., Hämäläinen, M., Iinatti, J.: UWB Theory and Applications UWB Theory and Applications. Wiley, Hoboken (2004)

    Google Scholar 

  • Paterna, V., Calveras, A., Aspas, J., Bullones, M.: A bluetooth low energy indoor positioning system with channel diversity, weighted trilateration and Kalman filtering. Sensors 17, 2927 (2017)

    Google Scholar 

  • Pinhasi, Y., Yahalom, A., Harpaz, O., Vilner, G.: Study of ultrawide-band transmission in the extremely high frequency (EHF) band. IEEE Trans. Antennas Propag. 52, 2833–2842 (2004)

    Google Scholar 

  • Qi, J., Liu, G.-P.: A robust high-accuracy ultrasound indoor positioning system based on a wireless sensor network. Sensors 17, 2554 (2017)

    Google Scholar 

  • Radunovic, B., Le Boudec, J.-Y.: Optimal power control, scheduling, and routing in UWB networks. IEEE J. Sel. Areas Commun. 22, 1252–1270 (2004)

    Google Scholar 

  • Raharijaona, T., et al.: Local positioning system using flickering infrared LEDs. Sensors 17, 2518 (2017)

    Google Scholar 

  • Rahayu, Y., Rahman, T.A., Ngah, R., Hall, P.S.: Ultra wideband technology and its applications. In: 2008 5th IFIP International Conference on Wireless and Optical Communications Networks (WOCN ’08). Presented at the 2008 IFIP International Conference on Wireless and Optical Communications Networks - (WOCN), Surabaya, Indonesia, pp. 1–5. IEEE (2008)

    Google Scholar 

  • Rai, A., Chintalapudi, K.K., Padmanabhan, V.N., Sen, R.: Zee: zero-effort crowdsourcing for indoor localization. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking - Mobicom ’12. Presented at the 18th Annual International Conference, Istanbul, Turkey, p. 293. ACM Press (2012)

    Google Scholar 

  • Ruotsalainen, L., Kuusniemi, H., Chen, R.: Visual-aided two-dimensional pedestrian indoor navigation with a smartphone. J. Glob. Position. Syst. 10, 11–18 (2011)

    Google Scholar 

  • Saab, S.S., Nakad, Z.S.: A standalone RFID indoor positioning system using passive tags. IEEE Trans. Ind. Electron. 58, 1961–1970 (2011)

    Google Scholar 

  • Sachs, J.: Handbook of Ultra-Wideband Short-Range Sensing: Theory, Sensors, Applications, pp. 1–30. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  • Sen, S., Radunovic, B., Choudhury, R.R., Minka, T.: You are facing the Mona Lisa: spot localization using PHY layer information. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services - MobiSys ’12. Presented at the 10th international Conference, Low Wood Bay, Lake District, UK, p. 183. ACM Press (2012)

    Google Scholar 

  • Suryavanshi, N.B., Viswavardhan Reddy, K., Chandrika, V.R.: Direction finding capability in Bluetooth 5.1 standard. In: Kumar, N., Venkatesha Prasad, R. (eds.) UBICNET 2019. LNICSSITE, vol. 276, pp. 53–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20615-4_4

    Chapter  Google Scholar 

  • Tadakamadla, S.: Indoor Local Positioning System for ZigBee, Based on RSSI. Mid Sweden University, Sundsvall, Sweden (2006)

    Google Scholar 

  • Ting, S.L., Kwok, S.K., Tsang, A.H.C., Ho, G.T.S.: The study on using passive RFID tags for indoor positioning. Int. J. Eng. Bus. Manag. 3, 8 (2011)

    Google Scholar 

  • Vasisht, D., Kumar, S., Katabi, D.: Sub-Nanosecond Time of Flight on Commercial Wi-Fi Cards. arXiv: arXiv:1505.03446 [Cs] (2015)

  • Viani, F., Rocca, P., Oliveri, G., Trinchero, D., Massa, A.: Localization, tracking, and imaging of targets in wireless sensor networks: an invited review. Radio Sci. 46, 1–12 (2011)

    Google Scholar 

  • Wan, X., Zhan, X.: The research of indoor navigation system using pseudolites. Procedia Eng. 15, 1446–1450 (2011)

    Google Scholar 

  • Wang, K., Nirmalathas, A., Lim, C., Alameh, K., Li, H., Skafidas, E.: Indoor infrared optical wireless localization system with background light power estimation capability. Opt. Exp. 25, 22923 (2017)

    Google Scholar 

  • Wang, X., Jiang, M., Guo, Z., Hu, N., Sun, Z., Liu, J.: An indoor positioning method for smartphones using landmarks and PDR. Sensors 16, 2135 (2016)

    Google Scholar 

  • Wu, K., Xiao, J., Yi, Y., Chen, D., Luo, X., Ni, L.M.: CSI-based indoor localization. IEEE Trans. Parallel Distrib. Syst. 24, 1300–1309 (2013)

    Google Scholar 

  • Xu, H., Wu, M., Li, P., Zhu, F., Wang, R.: An RFID indoor positioning algorithm based on support vector regression. Sensors 18, 1504 (2018)

    Google Scholar 

  • Wang, Y., Yang, X., Zhao, Y., Liu, Y., Cuthbert, L.: Bluetooth positioning using RSSI and triangulation methods. In: 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC). Presented at the 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, pp. 837–842. IEEE (2013)

    Google Scholar 

  • Yasir, M., Ho, S.-W., Vellambi, B.N.: Indoor position tracking using multiple optical receivers. J. Light. Technol. 34, 1166–1176 (2016)

    Google Scholar 

  • Yazici, A., Yayan, U., Yücel, H.: An ultrasonic based indoor positioning system. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications. Presented at the 2011 International Symposium on Innovations in Intelligent Systems and Applications, pp. 585–589 (2011)

    Google Scholar 

  • Youssef, M.: HORUS: A WLAN-based indoor location determination system. Department of Computer Science, University of Maryland (2004)

    Google Scholar 

  • Yu, J., Na, Z., Liu, X., Deng, Z.: WiFi/PDR-integrated indoor localization using unconstrained smartphones. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–13 (2019). https://doi.org/10.1186/s13638-019-1365-9

    Article  Google Scholar 

  • Yucel, H., Edizkan, R., Ozkir, T., Yazici, A.: Development of indoor positioning system with ultrasonic and infrared signals. In: 2012 International Symposium on Innovations in Intelligent Systems and Applications. Presented at the 2012 International Symposium on Innovations in Intelligent Systems and Applications, pp. 1–4 (2012)

    Google Scholar 

  • Zhang, M., Wen, Y., Chen, J., Yang, X., Gao, R., Zhao, H.: Pedestrian dead-reckoning indoor localization based on OS-ELM. IEEE Access 6, 6116–6129 (2018)

    Google Scholar 

  • Zhang, P., Lu, J., Wang, Y., Wang, Q.: Cooperative localization in 5G networks: a survey. ICT Exp. 3, 27–32 (2017)

    Google Scholar 

  • Zhuang, Y., et al.: A survey of positioning systems using visible LED lights. IEEE Commun. Surv. Tutor. 20, 1963–1988 (2018)

    Google Scholar 

Download references

Acknowledgement

The research leading to these results has received funding from the European Regional Development Fund (Fondo Europeo di Sviluppo Regionale FESR Alto Adige 2014–2020) under the Grant Agreement n. FESR 1064 CUP B51B17000850007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Siegele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siegele, D., Di Staso, U., Piovano, M., Marcher, C., Matt, D.T. (2020). State of the Art of Non-vision-Based Localization Technologies for AR in Facility Management. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2020. Lecture Notes in Computer Science(), vol 12242. Springer, Cham. https://doi.org/10.1007/978-3-030-58465-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58465-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58464-1

  • Online ISBN: 978-3-030-58465-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics