Abstract
Real-time camera pose estimation is one of the indispensable technologies for Augmented Reality (AR). While a large body of work in Visual Odometry (VO) has been proposed for AR, practical challenges such as scale ambiguities and accumulative errors still remain especially when we apply VO to large-scale scenes due to limited hardware and resources. We propose a camera pose registration method, where a local VO is consecutively optimized with respect to a large-scale scene map on the fly. This framework enables the scale estimation between a VO map and a scene map and reduces accumulative errors by finding corresponding locations in the map to the current frame and by on-the-fly pose graph optimization. The results using public datasets demonstrated that our approach reduces the accumulative errors of naïve VO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Burri, M., et al.: The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 35, 1157–1163 (2016)
Castle, R., Klein, G., Murray, D.W.: Video-rate localization in multiple maps for wearable augmented reality. In: International Symposium on Wearable Computers, pp. 15–22 (2008)
Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40, 611–625 (2017)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54
Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)
Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28, 1188–1197 (2012)
Gao, X., Wang, R., Demmel, N., Cremers, D.: LDSO: direct sparse odometry with loop closure. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2198–2204. IEEE (2018)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
Kume, H., Suppé, A., Kanade, T.: Vehicle localization along a previously driven route using an image database. In: IAPR International Conference on Machine Vision Applications (MVA), pp. 177–180 (2013)
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3607–3613. IEEE (2011)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33, 1255–1262 (2017)
Qin, T., Li, P., Shen, S.: Relocalization, global optimization and map merging for monocular visual-inertial SLAM. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1197–1204. IEEE (2018)
Qin, T., Li, P., Shen, S.: VINS-Mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 34, 1004–1020 (2018)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)
Schneider, T., et al.: Maplab: an open framework for research in visual-inertial mapping and localization. IEEE Robot. Autom. Lett. 3, 1418–1425 (2018)
Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113. IEEE (2016)
Taketomi, T., Sato, T., Yokoya, N.: Real-time and accurate extrinsic camera parameter estimation using feature landmark database for augmented reality. Comput. Graph. 35, 768–777 (2011)
Taketomi, T., Uchiyama, H., Ikeda, S.: Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9(1), 1–11 (2017). https://doi.org/10.1186/s41074-017-0027-2
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)
Ventura, J., Arth, C., Reitmayr, G., Schmalstieg, D.: Global localization from monocular SLAM on a mobile phone. IEEE Trans. Visual. Comput. Graph. 20, 531–539 (2014)
Ventura, J., Höllerer, T.: Wide-area scene mapping for mobile visual tracking. In: Int. Symp. on Mixed and Augmented Reality (ISMAR), pp. 3–12 (2012)
Von Stumberg, L., Usenko, V., Cremers, D.: Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2510–2517. IEEE (2018)
Wang, R., Schworer, M., Cremers, D.: Stereo DSO: large-scale direct sparse visual odometry with stereo cameras. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3903–3911 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yamaguchi, M., Mori, S., Saito, H., Yachida, S., Shibata, T. (2020). Global-Map-Registered Local Visual Odometry Using On-the-Fly Pose Graph Updates. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2020. Lecture Notes in Computer Science(), vol 12242. Springer, Cham. https://doi.org/10.1007/978-3-030-58465-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-58465-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58464-1
Online ISBN: 978-3-030-58465-8
eBook Packages: Computer ScienceComputer Science (R0)