Skip to main content

Augmented Reality to Increase Interaction and Participation: A Case Study of Undergraduate Students in Mathematics Class

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12243))

  • 2197 Accesses

Abstract

This work focuses on the Augmented Reality trying to improve students’ interaction and participation in the educational dialogue, preventing the drop out, tested with university mathematics courses. Students often have difficulties on some topics related to the transition between different representations, within the same representations and language, for example when dealing with the study of two-variable functions, but also about the exact differential forms and the identification of the domain to integrate a function of several variables. These difficulties lead to a decrease in interaction and participation, and sometimes to dropping out of the course. Augmented Reality has been used to overcome some of these difficulties, also with the use of some technological tools (3D glasses, computers, tablets) and innovative methodologies. In order to evaluate the impact of this approach on students’ interaction and participation, an experimentation with an e-learning platform based on Augmented Reality was carried out evaluating some affective and interaction parameters, computed through a Fuzzy Cognitive Map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldon, G., Raffin, C.: Mathematics learning and augmented reality in a virtual school. In: Augmented Reality in Educational Settings, pp. 123–146. Brill Sense (2019)

    Google Scholar 

  2. Arrigo, G., D’Amore, B.: Lo vedo ma non ci credo. Ostacoli epistemologici e didattici al processo di comprensione di un teorema di George Cantor che coinvolge l’infinito attuale. L’insegnamento della matematica e delle scienze integrate 22B(5), 465–494 (1999)

    Google Scholar 

  3. Bagni, G.T.: Limite e visualizzazione: una ricerca sperimentale. L’insegnamento della matematica e delle scienze integrate 22B(4), 333–372 (1999)

    Google Scholar 

  4. Berthoz, A.: La décision Odile Jacob (2003)

    Google Scholar 

  5. Branchetti, L., Capone, R., Tortoriello, F.S.: Un’esperienza didattica half-flipped in un ambiente di apprendimento SCALE-UP. Annali online della Didattica e della Formazione Docente 9(14), 355–371 (2018)

    Google Scholar 

  6. Branchetti, L., Viale, M.: Tra italiano e matematica: il ruolo della formulazione sintattica nella comprensione del testo matematico. In: Ostinelli, M. (ed.) La didattica dell’italiano. Problemi e prospettive. Dipartimento formazione e apprendimento, Scuola universitaria professionale della Svizzera italiana, Locarno (2015)

    Google Scholar 

  7. Brousseau, G.: Théorie des situations didactiques. La Pensée Sauvage, Grenoble (1998)

    Google Scholar 

  8. Capone, R.: Just-in-time teaching and peer-led team learning in mathematics education using social platform with undergraduate students. Int. J. Math. Educ. Sci. Technol. 1–19 (2020, printing)

    Google Scholar 

  9. Capone, R., Del Regno, F., Tortoriello, F.: E-teaching in mathematics education: the teacher’s role in online discussion. J. e-Learn. Knowl. Soc. 14(3), 41–51 (2018)

    Google Scholar 

  10. Chang, M., D’Aniello, G., Gaeta, M., Orciuoli, F., Sampson, D., Simonelli, C.: Building ontology-driven tutoring models for intelligent tutoring systems using data mining. IEEE Access 8, 48151–48162 (2020). Art. no. 9031710

    Google Scholar 

  11. Chen, Y.C., Chi, H.L., Hung, W.H., Kang, S.C.: Use of tangible and augmented reality models in engineering graphics courses. J. Prof. Issues Eng. Educ. Pract. 137(4), 267–276 (2011)

    Article  Google Scholar 

  12. D’Amore, B.: Lingua, Matematica e Didattica. La matematica e la sua didattica. 1, 28–47 (2000)

    Google Scholar 

  13. D’Aniello, G., Gaeta, A., Gaeta, M., Tomasiello, S., Self-regulated learning with approximate reasoning and situation awareness. J. Ambient Intell. Humaniz. Comput. 9(1), 151–164 (2018)

    Google Scholar 

  14. D’Aniello, G., De Falco, M., Gaeta, M., Lepore, M.: A situation-aware learning system based on fuzzy cognitive maps to increase learner motivation and engagement. In: 2020 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2020, Glasgow, UK (2020)

    Google Scholar 

  15. D’Aniello, G., De Falco, M., Gaeta, M., Lepore, M.: Feedback generation using Fuzzy Cognitive Maps to reduce dropout in situation-aware e-Learning systems. In: 2020 IEEE International Conference on Cognitive and Computational Aspects of Situation Management, CogSIMA 2020, Victoria, BC, Canada (2020)

    Google Scholar 

  16. Domínguez, R.G.: Participatory learning. In: Seel, N.M. (ed.) Encyclopedia of the Sciences of Learning. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-1428-6

    Chapter  Google Scholar 

  17. Dreyfus, T., Eisenberg, T.: On visual versus analytical thinking in mathematics. In: Proceedings of PME 10, London, pp. 152–158 (1986)

    Google Scholar 

  18. Duval, R.: Registres de Répresentations sémiotiques et Fonctionnement cognitif de la Pensée. Annales de didactique et de sciences cognitives 5, 37–65 (1993)

    Google Scholar 

  19. Ferrari, P.L.: Tecnologia informatica e sistemi di rappresentazione nell’insegna-mento universitario della matematica. Convegno UMI (2003)

    Google Scholar 

  20. Endsley, M.: Designing for Situation Awareness: An Approach to User-Centered Design. CRC Press, Boca Raton (2016)

    Google Scholar 

  21. El-Seoud, M.S.A., Ghenghesh, P., Seddiek, N., Nosseir, A., Taj-Eddin, I.A., El-Khouly, M.M.: E-Learning and motivation effects on Egyptian higher education. In: 2013 International Conference on Interactive Collaborative Learning (ICL), pp. 689–695. IEEE, September 2013

    Google Scholar 

  22. Gopalan, V., Zulkifi, A.N., Abubakar, J.A.A.: A study of students’ motivation using the AR science textbook. In: AIP Conference Proceedings, vol. 1761, no. 1, pp. 27–35 (2016)

    Google Scholar 

  23. Harandi, S.R.: Effects of e-learning on students’ motivation. Proc.-Soc. Behavi. Sci. 181, 423–430 (2015)

    Article  Google Scholar 

  24. Kaufmann, H., Steinbügl, K., Dünser, A., Glück, J.: General training of spatial abilities by geometry education in augmented reality. Ann. Rev. CyberTher. Telemed.: Decade VR 3, 65–76 (2005)

    Google Scholar 

  25. Kyei-Blankson, L. (ed.): Handbook of Research on Strategic Management of Interaction, Presence, and Participation in Online Courses. IGI Global, Hershey (2015)

    Google Scholar 

  26. Kosco, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24, 65–75 (1986)

    Article  Google Scholar 

  27. Latour, B.: On actor-network theory. A few clarifications plus more than a few complications. Soziale Welt 47, 369–381 (1996)

    Google Scholar 

  28. Michaelsen, L.K., Watson, W.E., Cragin, J.P., Fink, L.D.: Team-based learning: a potential solution to the problems of large classes. Exchange: Organiz. Behav. Teach. J. 7(4), 18–33 (1982)

    Google Scholar 

  29. Miranda, S., Marzano, A.: The augmented reality in the professional development: a systematic map. Form@ re-Open Journal per la formazione in rete 19(3), 207–220 (2019)

    Google Scholar 

  30. Piaget, J.: The stages of the intellectual development of the child. Bull. Menninger Clin. 26(3), 120 (1962)

    Google Scholar 

  31. Rivoltella, P.C.: Neurodidattica. Insegnare al cervello che apprende. Raffaello Cortina (2012)

    Google Scholar 

  32. Robert, A., Boschet, F.: L’acquisition des débuts de l’analyse sur R dans un section ordinaire de DEUG première année, Cahier de didactique des mathématiques 18–1, IREM, Paris VII (1984)

    Google Scholar 

  33. Salmeron, J.L.: Augmented fuzzy cognitive maps for modelling LMS critical success factors. Knowl.-Based Syst. 22(4), 53–59 (2009)

    Article  Google Scholar 

  34. Sarder, B.: Improving student engagement in online courses. In: Proceedings of the 2014 Annual Conference on ASEE (2014)

    Google Scholar 

  35. Sbaragli, S., Santi, G.: Teacher’s choices as the cause of misconceptions in the learning of the concept of angle. Int. J. Stud. Math. Educ. 4, 1–41 (2011)

    Google Scholar 

  36. Simondon, G.: Technical mentality. Parrhesia 7(1), 17–27 (2009)

    Google Scholar 

  37. Stanford-Bowers, D.E.: Persistence in online classes: a study of perceptions among community college stakeholder. J. Online Learn. Teach. 4(1), 37–50 (2008)

    Google Scholar 

  38. Star, S., Griesemer, J.R.: Institutional ecology. ‘Translations’ and boundary objects: amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology. Soc. Stud. Sci. 19, 387–420 (1989)

    Article  Google Scholar 

  39. Swidan, O., Schacht, F., Sabena, C., Fried, M., El-Sana, J., Arzarello, F.: Engaging students in covariational reasoning within an augmented reality environment. In: Augmented Reality in Educational Settings, pp. 147–167. Brill Sense (2019)

    Google Scholar 

  40. Tall, D., Vinner, S.: Concept images and concept definition in mathematics with particular reference to limits and continuity. Educ. Stud. Math. 12, 151–169 (1981)

    Article  Google Scholar 

  41. Vygotsky, L.: Interaction between learning and development. Read. Dev. Child. 23(3), 34–41 (1978)

    Google Scholar 

  42. Zan, R.: Difficoltà in matematica: osservare, interpretare, intervenire. Springer, Milano (2007). https://doi.org/10.1007/978-88-470-0584-6

Download references

Acknowledgements

This research was supported in part by the Italian Ministry of Economic Development (MISE) under the Project “MOLIERE (MOtivational Learning and Interactive Education Revolution)” – PON I&C 2014-2020. The authors would like to thank Italdata S.p.A, the CORISA and the DISA-MIS of the University of Salerno who participated in the project, for the interesting discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Capone or Mario Lepore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capone, R., Lepore, M. (2020). Augmented Reality to Increase Interaction and Participation: A Case Study of Undergraduate Students in Mathematics Class. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2020. Lecture Notes in Computer Science(), vol 12243. Springer, Cham. https://doi.org/10.1007/978-3-030-58468-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58468-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58467-2

  • Online ISBN: 978-3-030-58468-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics