Abstract
In this paper, we focus on qualitative temporal sequences of topological information. We firstly consider the context of topological temporal sequences of length greater than 3 describing the evolution of regions at consecutive time points. We show that there is no Cartesian subclass containing all the basic relations and the universal relation for which the algebraic closure decides satisfiability. However, we identify some tractable subclasses, by giving up the relations containing the non-tangential proper part relation and not containing the tangential proper part relation.
We then formalize an alternative semantics for temporal sequences. We place ourselves in the context of the topological temporal sequences describing the evolution of regions on a partition of time (i.e. an alternation of instants and intervals). In this context, we identify large tractable fragments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bennett, B., Cohn, A.G., Torrini, P., Hazarika, S.M.: Describing rigid body motions in a qualitative theory of spatial regions (2000)
Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Appl. Intell. 17(3), 239–251 (2002). https://doi.org/10.1023/A:1020083231504
Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: A PDL approach for qualitative velocity. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 19(01), 11–26 (2011)
Burrieza, A., Ojeda-Aciego, M.: A multimodal logic approach to order of magnitude qualitative reasoning with comparability and negligibility relations. Fundam. Informaticae 68(1–2), 21–46 (2005)
Chen, J., Cohn, A.G., Liu, D., Wang, S., Ouyang, J., Yu, Q.: A survey of qualitative spatial representations. Knowl. Eng. Rev. 30(01), 106–136 (2015)
Cohen-Solal, Q., Bouzid, M., Niveau, A.: Checking the consistency of combined qualitative constraint networks. In: Proceedings of AAAI (2017)
Cohen-Solal, Q., Bouzid, M., Niveau, A.: Temporal sequences of qualitative information: reasoning about the topology of constant-size moving regions. In: Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 986–992 (2017)
Cohn, A.G., Gotts, N.M., Cui, Z., Randell, D.A., Bennett, B., Gooday, J.: Exploiting temporal continuity in qualitative spatial calculi. In: Spatial and Temporal Reasoning in Geographic Information Systems, pp. 5–24 (1998)
Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an overview. Fundam. informaticae 46(1–2), 1–29 (2001)
Davis, E.: Continuous shape transformation and metrics on regions. Fundam. Informaticae 46(1–2), 31–54 (2001)
Dylla, F., et al.: A survey of qualitative spatial and temporal calculi: algebraic and computational properties. ACM Comput. Surv. (CSUR) 50(1) (2017). Article no. 7
Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition 2004. LNCS (LNAI), vol. 3343, pp. 304–322. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32255-9_18
Dylla, F., Wallgrün, J.O.: Qualitative spatial reasoning with conceptual neighborhoods for agent control. J. Intell. Robot. Syst. 48(1), 55–78 (2007). https://doi.org/10.1007/s10846-006-9099-4
Egenhofer, M.J.: The family of conceptual neighborhood graphs for region-region relations. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 42–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15300-6_4
Egenhofer, M.J.: Qualitative spatial-relation reasoning for design. In: Gero, J.S. (ed.) Studying Visual and Spatial Reasoning for Design Creativity, pp. 153–175. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9297-4_9
Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Proceedings of the IMACS Workshop on Decision Support Systems and Qualitative Reasoning, pp. 181–187 (1991)
Freksa, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54(1–2), 199–227 (1992)
Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the computational complexity of spatio-temporal logics. In: FLAIRS Conference, pp. 460–464 (2003)
Galton, A.: Towards an integrated logic of space, time, and motion. In: Proceedings of IJCAI, pp. 1550–1555 (1993)
Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)
Galton, A.: Dominance diagrams: a tool for qualitative reasoning about continuous systems. Fundam. Informaticae 46(1–2), 55–70 (2001)
Gerevini, A., Nebel, B.: Qualitative spatio-temporal reasoning with RCC-8 and Allen’s interval calculus: computational complexity. In: Proceedings of ECAI, pp. 312–316 (2002)
Hazarika, S.M., Cohn, A.G.: Qualitative spatio-temporal continuity. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 92–107. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45424-1_7
Hazarika, S.M.: Qualitative spatial change: space-time histories and continuity. Ph.D. thesis, University of Leeds (2005)
Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Schmidt, J.W., Thanos, C. (eds.) Foundations of Knowledge Base Management. TINF, pp. 23–55. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-83397-7_2
Kurata, Y., Egenhofer, M.J.: The 9+-intersection for topological relations between a directed line segment and a region
Landsiedel, C., Rieser, V., Walter, M., Wollherr, D.: A review of spatial reasoning and interaction for real-world robotics. Adv. Robot. 31(5), 222–242 (2017)
Li, S., Ying, M.: Region connection calculus: its models and composition table. Artif. Intell. 145(1–2), 121–146 (2003)
Ligozat, G.: Towards a general characterization of conceptual neighborhoods in temporal and spatial reasoning. In: AAAI 1994 The Twelfth National Conference on Artificial Intelligence (1994)
Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley, Hoboken (2013)
Mansouri, M., Pecora, F.: A robot sets a table: a case for hybrid reasoning with different types of knowledge. J. Exp. Theor. Artif. Intell. 28(5), 801–821 (2016)
Muller, P.: Topological spatio-temporal reasoning and representation. Comput. Intell. 18(3), 420–450 (2002)
Ragni, M., Wölfl, S.: Temporalizing cardinal directions: from constraint satisfaction to planning. In: Proceedings of KR, pp. 472–480 (2006)
Ragni, M., Wölfl, S.: Reasoning about topological and positional information in dynamic settings. In: Proceedings of the FLAIRS Conference, pp. 606–611 (2008)
Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of KR, pp. 165–176 (1992)
Reis, R.M., Egenhofer, M.J., Matos, J.L.: Conceptual neighborhoods of topological relations between lines. In: Ruas, A., Gold, C. (eds.) Headway in Spatial Data Handling. LNGC, pp. 557–574. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68566-1_32
Renz, J.: Maximal tractable fragments of the region connection calculus: a complete analysis. In: Proceedings of IJCAI, pp. 448–455 (1999)
Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_40
Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. J. Artif. Intell. Res. 15, 289–318 (2001)
Santos, M.Y., Moreira, A.: Conceptual neighborhood graphs for topological spatial relations. In: Proceedings of the World Congress on Engineering, vol. 1, pp. 12–18 (2009)
Sioutis, M., Alirezaie, M., Renoux, J., Loutfi, A.: Towards a synergy of qualitative spatio-temporal reasoning and smart environments for assisting the elderly at home. In: IJCAI Workshop on Qualitative Reasoning, pp. 901–907 (2017)
Sioutis, M., Condotta, J.-F., Salhi, Y., Mazure, B.: A qualitative spatio-temporal framework based on point algebra. In: Agre, G., Hitzler, P., Krisnadhi, A.A., Kuznetsov, S.O. (eds.) AIMSA 2014. LNCS (LNAI), vol. 8722, pp. 117–128. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10554-3_11
Sioutis, M., Condotta, J.-F., Salhi, Y., Mazure, B.: Generalized qualitative spatio-temporal reasoning: complexity and tableau method. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 54–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_5
Sioutis, M., Condotta, J.-F., Salhi, Y., Mazure, B., Randell, D.A.: Ordering spatio-temporal sequences to meet transition constraints: complexity and framework. In: Chbeir, R., Manolopoulos, Y., Maglogiannis, I., Alhajj, R. (eds.) AIAI 2015. IAICT, vol. 458, pp. 130–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23868-5_10
Van Benthem, J.: The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal Ontology and Temporal Discourse, vol. 156. Springer, Heidelberg (2013)
Van de Weghe, N., De Maeyer, P.: Conceptual neighbourhood diagrams for representing moving objects. In: Akoka, J., et al. (eds.) ER 2005. LNCS, vol. 3770, pp. 228–238. Springer, Heidelberg (2005). https://doi.org/10.1007/11568346_25
Westphal, M., Dornhege, C., Wölfl, S., Gissler, M., Nebel, B.: Guiding the generation of manipulation plans by qualitative spatial reasoning. Spat. Cogn. Comput. 11(1), 75–102 (2011)
Westphal, M., Hué, J., Wölfl, S., Nebel, B.: Transition constraints: a study on the computational complexity of qualitative change. In: Proceedings of IJCAI, pp. 1169–1175 (2013)
Westphal, M., Wölfl, S.: Qualitative CSP, finite CSP, and SAT: comparing methods for qualitative constraint-based reasoning. In: Twenty-First International Joint Conference on Artificial Intelligence (2009)
Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning based on RCC-8. In: KR, pp. 3–14 (2000)
Wolter, F., Zakharyaschev, M.: Qualitative spatio-temporal representation and reasoning: a computational perspective. In: Exploring Artificial Intelligence in the New Millenium, pp. 175–216 (2002)
Wu, J., Claramunt, C., Deng, M.: Towards a qualitative representation of movement. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 191–200. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12256-4_20
Zimmermann, K., Freksa, C.: Enhancing spatial reasoning by the concept of motion. In: Prospects for Artificial Intelligence, pp. 140–147 (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cohen-Solal, Q. (2020). Tractable Fragments of Temporal Sequences of Topological Information. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-58475-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58474-0
Online ISBN: 978-3-030-58475-7
eBook Packages: Computer ScienceComputer Science (R0)