Skip to main content

Tractable Fragments of Temporal Sequences of Topological Information

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12333))

  • 1498 Accesses

Abstract

In this paper, we focus on qualitative temporal sequences of topological information. We firstly consider the context of topological temporal sequences of length greater than 3 describing the evolution of regions at consecutive time points. We show that there is no Cartesian subclass containing all the basic relations and the universal relation for which the algebraic closure decides satisfiability. However, we identify some tractable subclasses, by giving up the relations containing the non-tangential proper part relation and not containing the tangential proper part relation.

We then formalize an alternative semantics for temporal sequences. We place ourselves in the context of the topological temporal sequences describing the evolution of regions on a partition of time (i.e. an alternation of instants and intervals). In this context, we identify large tractable fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, B., Cohn, A.G., Torrini, P., Hazarika, S.M.: Describing rigid body motions in a qualitative theory of spatial regions (2000)

    Google Scholar 

  2. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Appl. Intell. 17(3), 239–251 (2002). https://doi.org/10.1023/A:1020083231504

    Article  MATH  Google Scholar 

  3. Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: A PDL approach for qualitative velocity. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 19(01), 11–26 (2011)

    Article  MathSciNet  Google Scholar 

  4. Burrieza, A., Ojeda-Aciego, M.: A multimodal logic approach to order of magnitude qualitative reasoning with comparability and negligibility relations. Fundam. Informaticae 68(1–2), 21–46 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Chen, J., Cohn, A.G., Liu, D., Wang, S., Ouyang, J., Yu, Q.: A survey of qualitative spatial representations. Knowl. Eng. Rev. 30(01), 106–136 (2015)

    Article  Google Scholar 

  6. Cohen-Solal, Q., Bouzid, M., Niveau, A.: Checking the consistency of combined qualitative constraint networks. In: Proceedings of AAAI (2017)

    Google Scholar 

  7. Cohen-Solal, Q., Bouzid, M., Niveau, A.: Temporal sequences of qualitative information: reasoning about the topology of constant-size moving regions. In: Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 986–992 (2017)

    Google Scholar 

  8. Cohn, A.G., Gotts, N.M., Cui, Z., Randell, D.A., Bennett, B., Gooday, J.: Exploiting temporal continuity in qualitative spatial calculi. In: Spatial and Temporal Reasoning in Geographic Information Systems, pp. 5–24 (1998)

    Google Scholar 

  9. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: an overview. Fundam. informaticae 46(1–2), 1–29 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Davis, E.: Continuous shape transformation and metrics on regions. Fundam. Informaticae 46(1–2), 31–54 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Dylla, F., et al.: A survey of qualitative spatial and temporal calculi: algebraic and computational properties. ACM Comput. Surv. (CSUR) 50(1) (2017). Article no. 7

    Google Scholar 

  12. Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition 2004. LNCS (LNAI), vol. 3343, pp. 304–322. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32255-9_18

    Chapter  Google Scholar 

  13. Dylla, F., Wallgrün, J.O.: Qualitative spatial reasoning with conceptual neighborhoods for agent control. J. Intell. Robot. Syst. 48(1), 55–78 (2007). https://doi.org/10.1007/s10846-006-9099-4

    Article  Google Scholar 

  14. Egenhofer, M.J.: The family of conceptual neighborhood graphs for region-region relations. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 42–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15300-6_4

    Chapter  Google Scholar 

  15. Egenhofer, M.J.: Qualitative spatial-relation reasoning for design. In: Gero, J.S. (ed.) Studying Visual and Spatial Reasoning for Design Creativity, pp. 153–175. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9297-4_9

    Chapter  Google Scholar 

  16. Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Proceedings of the IMACS Workshop on Decision Support Systems and Qualitative Reasoning, pp. 181–187 (1991)

    Google Scholar 

  17. Freksa, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54(1–2), 199–227 (1992)

    Article  MathSciNet  Google Scholar 

  18. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the computational complexity of spatio-temporal logics. In: FLAIRS Conference, pp. 460–464 (2003)

    Google Scholar 

  19. Galton, A.: Towards an integrated logic of space, time, and motion. In: Proceedings of IJCAI, pp. 1550–1555 (1993)

    Google Scholar 

  20. Galton, A.: Qualitative Spatial Change. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  21. Galton, A.: Dominance diagrams: a tool for qualitative reasoning about continuous systems. Fundam. Informaticae 46(1–2), 55–70 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Gerevini, A., Nebel, B.: Qualitative spatio-temporal reasoning with RCC-8 and Allen’s interval calculus: computational complexity. In: Proceedings of ECAI, pp. 312–316 (2002)

    Google Scholar 

  23. Hazarika, S.M., Cohn, A.G.: Qualitative spatio-temporal continuity. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 92–107. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45424-1_7

    Chapter  Google Scholar 

  24. Hazarika, S.M.: Qualitative spatial change: space-time histories and continuity. Ph.D. thesis, University of Leeds (2005)

    Google Scholar 

  25. Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Schmidt, J.W., Thanos, C. (eds.) Foundations of Knowledge Base Management. TINF, pp. 23–55. Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-83397-7_2

    Chapter  Google Scholar 

  26. Kurata, Y., Egenhofer, M.J.: The 9+-intersection for topological relations between a directed line segment and a region

    Google Scholar 

  27. Landsiedel, C., Rieser, V., Walter, M., Wollherr, D.: A review of spatial reasoning and interaction for real-world robotics. Adv. Robot. 31(5), 222–242 (2017)

    Article  Google Scholar 

  28. Li, S., Ying, M.: Region connection calculus: its models and composition table. Artif. Intell. 145(1–2), 121–146 (2003)

    Article  MathSciNet  Google Scholar 

  29. Ligozat, G.: Towards a general characterization of conceptual neighborhoods in temporal and spatial reasoning. In: AAAI 1994 The Twelfth National Conference on Artificial Intelligence (1994)

    Google Scholar 

  30. Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley, Hoboken (2013)

    Book  Google Scholar 

  31. Mansouri, M., Pecora, F.: A robot sets a table: a case for hybrid reasoning with different types of knowledge. J. Exp. Theor. Artif. Intell. 28(5), 801–821 (2016)

    Article  Google Scholar 

  32. Muller, P.: Topological spatio-temporal reasoning and representation. Comput. Intell. 18(3), 420–450 (2002)

    Article  MathSciNet  Google Scholar 

  33. Ragni, M., Wölfl, S.: Temporalizing cardinal directions: from constraint satisfaction to planning. In: Proceedings of KR, pp. 472–480 (2006)

    Google Scholar 

  34. Ragni, M., Wölfl, S.: Reasoning about topological and positional information in dynamic settings. In: Proceedings of the FLAIRS Conference, pp. 606–611 (2008)

    Google Scholar 

  35. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of KR, pp. 165–176 (1992)

    Google Scholar 

  36. Reis, R.M., Egenhofer, M.J., Matos, J.L.: Conceptual neighborhoods of topological relations between lines. In: Ruas, A., Gold, C. (eds.) Headway in Spatial Data Handling. LNGC, pp. 557–574. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68566-1_32

    Chapter  Google Scholar 

  37. Renz, J.: Maximal tractable fragments of the region connection calculus: a complete analysis. In: Proceedings of IJCAI, pp. 448–455 (1999)

    Google Scholar 

  38. Renz, J., Ligozat, G.: Weak composition for qualitative spatial and temporal reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_40

    Chapter  MATH  Google Scholar 

  39. Renz, J., Nebel, B.: Efficient methods for qualitative spatial reasoning. J. Artif. Intell. Res. 15, 289–318 (2001)

    Article  MathSciNet  Google Scholar 

  40. Santos, M.Y., Moreira, A.: Conceptual neighborhood graphs for topological spatial relations. In: Proceedings of the World Congress on Engineering, vol. 1, pp. 12–18 (2009)

    Google Scholar 

  41. Sioutis, M., Alirezaie, M., Renoux, J., Loutfi, A.: Towards a synergy of qualitative spatio-temporal reasoning and smart environments for assisting the elderly at home. In: IJCAI Workshop on Qualitative Reasoning, pp. 901–907 (2017)

    Google Scholar 

  42. Sioutis, M., Condotta, J.-F., Salhi, Y., Mazure, B.: A qualitative spatio-temporal framework based on point algebra. In: Agre, G., Hitzler, P., Krisnadhi, A.A., Kuznetsov, S.O. (eds.) AIMSA 2014. LNCS (LNAI), vol. 8722, pp. 117–128. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10554-3_11

    Chapter  Google Scholar 

  43. Sioutis, M., Condotta, J.-F., Salhi, Y., Mazure, B.: Generalized qualitative spatio-temporal reasoning: complexity and tableau method. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 54–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_5

    Chapter  MATH  Google Scholar 

  44. Sioutis, M., Condotta, J.-F., Salhi, Y., Mazure, B., Randell, D.A.: Ordering spatio-temporal sequences to meet transition constraints: complexity and framework. In: Chbeir, R., Manolopoulos, Y., Maglogiannis, I., Alhajj, R. (eds.) AIAI 2015. IAICT, vol. 458, pp. 130–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23868-5_10

    Chapter  Google Scholar 

  45. Van Benthem, J.: The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal Ontology and Temporal Discourse, vol. 156. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  46. Van de Weghe, N., De Maeyer, P.: Conceptual neighbourhood diagrams for representing moving objects. In: Akoka, J., et al. (eds.) ER 2005. LNCS, vol. 3770, pp. 228–238. Springer, Heidelberg (2005). https://doi.org/10.1007/11568346_25

    Chapter  Google Scholar 

  47. Westphal, M., Dornhege, C., Wölfl, S., Gissler, M., Nebel, B.: Guiding the generation of manipulation plans by qualitative spatial reasoning. Spat. Cogn. Comput. 11(1), 75–102 (2011)

    Article  Google Scholar 

  48. Westphal, M., Hué, J., Wölfl, S., Nebel, B.: Transition constraints: a study on the computational complexity of qualitative change. In: Proceedings of IJCAI, pp. 1169–1175 (2013)

    Google Scholar 

  49. Westphal, M., Wölfl, S.: Qualitative CSP, finite CSP, and SAT: comparing methods for qualitative constraint-based reasoning. In: Twenty-First International Joint Conference on Artificial Intelligence (2009)

    Google Scholar 

  50. Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning based on RCC-8. In: KR, pp. 3–14 (2000)

    Google Scholar 

  51. Wolter, F., Zakharyaschev, M.: Qualitative spatio-temporal representation and reasoning: a computational perspective. In: Exploring Artificial Intelligence in the New Millenium, pp. 175–216 (2002)

    Google Scholar 

  52. Wu, J., Claramunt, C., Deng, M.: Towards a qualitative representation of movement. In: Indulska, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8823, pp. 191–200. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12256-4_20

    Chapter  Google Scholar 

  53. Zimmermann, K., Freksa, C.: Enhancing spatial reasoning by the concept of motion. In: Prospects for Artificial Intelligence, pp. 140–147 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Cohen-Solal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cohen-Solal, Q. (2020). Tractable Fragments of Temporal Sequences of Topological Information. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics