Abstract
While an important problem in the vision community is to design algorithms that can automatically caption images, few publicly-available datasets for algorithm development directly address the interests of real users. Observing that people who are blind have relied on (human-based) image captioning services to learn about images they take for nearly a decade, we introduce the first image captioning dataset to represent this real use case. This new dataset, which we call VizWiz-Captions, consists of over 39,000 images originating from people who are blind that are each paired with five captions. We analyze this dataset to (1) characterize the typical captions, (2) characterize the diversity of content found in the images, and (3) compare its content to that found in eight popular vision datasets. We also analyze modern image captioning algorithms to identify what makes this new dataset challenging for the vision community. We publicly-share the dataset with captioning challenge instructions at https://vizwiz.org.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout, we use “caption” and “description” interchangeably.
- 2.
For “yes/no” visual questions, we sampled 50 that have the answer “yes” and another 50 with the answer “no.” For “number” visual questions, we sampled 50 that begin with the question “How many” and another 50 that begin with “How much.” Finally, we randomly sampled another 100 visual questions from the “other” category.
- 3.
We show parallel analysis in the Supplementary Materials using the proportions of each dataset rather than absolute numbers. For both sets of results, we only show a subset of the 70 scene categories.
- 4.
References
Add alternative text to a shape, picture, chart, SmartArt graphic, or other object. https://support.office.com/en-us/article/add-alternative-text-to-a-shape-picture-chart-smartart-graphic-or-other-object-44989b2a-903c-4d9a-b742-6a75b451c669
BeSpecular. https://www.bespecular.com
Home - Aira: Aira. https://aira.io/
How does automatic alt text work on Facebook? — Facebook Help Center. https://www.facebook.com/help/216219865403298
TapTapSee - Blind and Visually Impaired Assistive Technology - powered by the CloudSight.ai Image Recognition API. https://taptapseeapp.com/
Agrawal, H., et al.: Nocaps: novel object captioning at scale. arXiv preprint arXiv:1812.08658 (2018)
Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24
Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR (2018)
Bai, S., An, S.: A survey on automatic image caption generation. Neurocomputing 311, 291–304 (2018)
Bennett, C.L., Mott, M.E., Cutrell, E., Morris, M.R.: How teens with visual impairments take, edit, and share photos on social media. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 76. ACM (2018)
Bigham, J.P., et al.: VizWiz: nearly real-time answers to visual questions. In: Proceedings of the 23rd Annual ACM Symposium on User Interface Software and Technology, pp. 333–342. ACM (2010)
Brady, E., Morris, M.R., Zhong, Y., White, S., Bigham, J.P.: Visual challenges in the everyday lives of blind people. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2117–2126. ACM (2013)
Burton, M.A., Brady, E., Brewer, R., Neylan, C., Bigham, J.P., Hurst, A.: Crowdsourcing subjective fashion advice using VizWiz: challenges and opportunities. In: Proceedings of the 14th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 135–142. ACM (2012)
Chen, J., Kuznetsova, P., Warren, D., Choi, Y.: Déja image-captions: a corpus of expressive descriptions in repetition. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 504–514 (2015)
Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)
Chiu, T.-Y., Zhao, Y., Gurari, D.: Assessing image quality issues for real-world problems. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3646–3656 (2020)
Denkowski, M., Lavie, A.: Meteor universal: language specific translation evaluation for any target language. In: Proceedings of the EACL 2014 Workshop on Statistical Machine Translation (2014)
Elliott, D., Keller, F.: Image description using visual dependency representations. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1292–1302 (2013)
Farhadi, A., et al.: Every picture tells a story: generating sentences from images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 15–29. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_2
Feng, Y., Lapata, M.: Automatic image annotation using auxiliary text information. In: Proceedings of ACL 2008: HLT, pp. 272–280 (2008)
Gan, C., Gan, Z., He, X., Gao, J., Deng, L.: StyleNet: generating attractive visual captions with styles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3137–3146 (2017)
Grubinger, M., Clough, P., Müller, H., Deselaers, T.: The IAPR TC-12 benchmark: a new evaluation resource for visual information systems. In: International Workshop OntoImage, vol. 5 (2006)
Guinness, D., Cutrell, E., Morris, M.R.: Caption crawler: enabling reusable alternative text descriptions using reverse image search. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 518. ACM (2018)
Gurari, D., et al.: VizWiz-Priv: a dataset for recognizing the presence and purpose of private visual information in images taken by blind people. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 939–948 (2019)
Gurari, D., et al.: VizWiz grand challenge: answering visual questions from blind people. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3617 (2018)
Harwath, D., Glass, J.: Deep multimodal semantic embeddings for speech and images. In: 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 237–244. IEEE (2015)
Havard, W., Besacier, L., Rosec, O.: SPEECH-COCO: 600k visually grounded spoken captions aligned to MSCOCO data set. arXiv preprint arXiv:1707.08435 (2017)
Hodosh, M., Young, P., Hockenmaier, J.: Framing image description as a ranking task: data, models and evaluation metrics. J. Artif. Intell. Res. 47, 853–899 (2013)
Hossain, M.D., Sohel, F., Shiratuddin, M.F., Laga, H.: A comprehensive survey of deep learning for image captioning. ACM Comput. Surv. (CSUR) 51(6), 118 (2019)
Huang, L., Wang, W., Chen, J., Wei, X.-Y.: Attention on attention for image captioning. In: International Conference on Computer Vision (2019)
Jas, M., Parikh, D.: Image specificity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2727–2736 (2015)
Kong, C., Lin, D., Bansal, M., Urtasun, R., Fidler, S.: What are you talking about? Text-to-image coreference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3558–3565 (2014)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017). https://doi.org/10.1007/S11263-016-0981-7
Kulkarni, G., et al.: BabyTalk: understanding and generating simple image descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2891–2903 (2013)
Lin, C.-Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, pp. 74–81 (2004)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
MacLeod, H., Bennett, C.L., Morris, M.R., Cutrell, E.: Understanding blind people’s experiences with computer-generated captions of social media images. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 5988–5999. ACM (2017)
Morris, M.R., Johnson, J., Bennett, C.L., Cutrell, E.: Rich representations of visual content for screen reader users. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 59. ACM (2018)
Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)
Patterson, G., Hays, J.: Sun attribute database: discovering, annotating, and recognizing scene attributes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2751–2758. IEEE (2012)
Patterson, G., Hays, J.: COCO attributes: attributes for people, animals, and objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 85–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_6
Petrie, H., Harrison, C., Dev, S.: Describing images on the web: a survey of current practice and prospects for the future. In: Proceedings of Human Computer Interaction International (HCII), no. 71 (2005)
Rashtchian, C., Young, P., Hodosh, M., Hockenmaier, J.: Collecting image annotations using Amazon’s Mechanical Turk. In: Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, pp. 139–147. Association for Computational Linguistics (2010)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Salisbury, E., Kamar, E., Morris, M.R.: Toward scalable social alt text: conversational crowdsourcing as a tool for refining vision-to-language technology for the blind. In: Proceedings of HCOMP 2017 (2017)
Salisbury, E., Kamar, E., Morris, M.R.: Evaluating and complementing vision-to-language technology for people who are blind with conversational crowdsourcing. In: IJCAI, pp. 5349–5353 (2018)
Shuster, K., Humeau, S., Hu, H., Bordes, A., Weston, J.: Engaging image captioning via personality. arXiv preprint arXiv:1810.10665 (2018)
Srivastava, G., Srivastava, R.: A survey on automatic image captioning. In: Ghosh, D., Giri, D., Mohapatra, R.N., Savas, E., Sakurai, K., Singh, L.P. (eds.) ICMC 2018. CCIS, vol. 834, pp. 74–83. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-0023-3_8
Stangl, A., Morris, M.R., Gurari, D.: “Person, shoes, tree. Is the person naked?” What people with vision impairments want in image descriptions. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2020)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: CIDEr: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)
Von Ahn, L., Ginosar, S., Kedia, M., Liu, R., Blum, M.: Improving accessibility of the web with a computer game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 79–82. ACM (2006)
Voykinska, V., Azenkot, S., Wu, S., Leshed, G.: How blind people interact with visual content on social networking services. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, pp. 1584–1595. ACM (2016)
Wu, S., Wieland, J., Farivar, O., Schiller, J.: Automatic alt-text: computer-generated image descriptions for blind users on a social network service. In: CSCW, pp. 1180–1192 (2017)
Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492. IEEE (2010)
Yang, X., Tang, K., Zhang, H., Cai, J.: Auto-encoding scene graphs for image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10685–10694 (2019)
Yoshikawa, Y., Shigeto, Y., Takeuchi, A.: Stair captions: constructing a large-scale Japanese image caption dataset. arXiv preprint arXiv:1705.00823 (2017)
Young, P., Lai, A., Hodosh, M., Hockenmaier, J.: From image descriptions to visual denotations: new similarity metrics for semantic inference over event descriptions. Trans. Assoc. Comput. Linguist. 2, 67–78 (2014)
Zhong, Y., Lasecki, W.S., Brady, E., Bigham, J.P.: RegionSpeak: quick comprehensive spatial descriptions of complex images for blind users. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2353–2362. ACM (2015)
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)
Zitnick, C.L., Parikh, D., Vanderwende, L.: Learning the visual interpretation of sentences. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1681–1688 (2013)
Acknowledgements
We thank Meredith Ringel Morris, Ed Cutrell, Neel Joshi, Besmira Nushi, and Kenneth R. Fleischmann for their valuable discussions about this work. We thank Peter Anderson and Harsh Agrawal for sharing their code for setting up the EvalAI evaluation server. We thank the anonymous crowdworkers for providing the annotations. This work is supported by National Science Foundation funding (IIS-1755593), gifts from Microsoft, and gifts from Amazon.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Gurari, D., Zhao, Y., Zhang, M., Bhattacharya, N. (2020). Captioning Images Taken by People Who Are Blind. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12362. Springer, Cham. https://doi.org/10.1007/978-3-030-58520-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-58520-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58519-8
Online ISBN: 978-3-030-58520-4
eBook Packages: Computer ScienceComputer Science (R0)