Abstract
We introduce a differentiable monotonicity prior, useful to express signals of monotonic tendency. An important natural signal of this tendency is the optical extinction coefficient, as a function of altitude in a cloud. Cloud droplets become larger as vapor condenses on them in an updraft. Reconstruction of the volumetric structure of clouds is important for climate research. Data for such reconstruction is multi-view images of each cloud taken simultaneously. This acquisition mode is expected by upcoming future spaceborne imagers. We achieve three-dimensional volumetric reconstruction through stochastic scattering tomography, which is based on optimization of a cost function. Part of the cost is the monotonicity prior, which helps to improve the reconstruction quality. The stochastic tomography is based on Monte-Carlo (MC) radiative transfer. It is formulated and implemented in a coarse-to-fine form, making it scalable to large fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The factor \(Q_\text {eff}(r)\) depends on the wavelength \(\lambda \). For clouds, typically \(r\gg \lambda \). Then, it is reasonable to neglect the dependency of \(Q_\text {eff}\) on r and \(\lambda \) [35].
References
Aides, A., Levis, A., Holodovsky, V., Schechner, Y.Y., Althausen, D., Vainiger, A.: Distributed sky imaging radiometry and tomography. In: ICCP, pp. 1–12. IEEE (2020)
Aides, A., Schechner, Y.Y., Holodovsky, V., Garay, M.J., Davis, A.B.: Multi sky-view 3D aerosol distribution recovery. Opt. Express 21(22), 25820–25833 (2013)
Alterman, M., Schechner, Y.Y., Vo, M., Narasimhan, S.G.: Passive tomography of turbulence strength. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 47–60. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_4
Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 218–233 (2003)
Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: ICCP, pp. 1–9. IEEE (2017)
Binzoni, T., Leung, T.S., Gandjbakhche, A.H., Ruefenacht, D., Delpy, D.: The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics. Phys. Med. Biol. 51(17), N313 (2006)
Chung, D., Matheou, G.: Large-eddy simulation of stratified turbulence. Part i: a vortex-based subgrid-scale model. J. Atmos. Sci. 71(5), 1863–1879 (2014)
Davis, C., Emde, C., Harwood, R.: A 3-D polarized reversed Monte Carlo radiative transfer model for Millimeter and submillimeter passive remote sensing in cloudy atmospheres. IEEE Trans. Geosci. Remote Sens. 43(5), 1096–1101 (2005)
Deng, X., Jiao, S., Bitterli, B., Jarosz, W.: Photon surfaces for robust, unbiased volumetric density estimation. ACM Trans. Graph. 38(4), 46 (2019)
Diner, D.J., Martonchik, J.V.: Atmospheric transmittance from spacecraft using multiple view angle imagery. Appl. Opt. 24(21), 3503–3511 (1985)
Evans, K.F.: The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci. 55(3), 429–446 (1998)
Frisvad, J.R.: Importance sampling the Rayleigh phase function. JOSA 28(12), 2436–2441 (2011)
Georgiev, I., Misso, Z., Hachisuka, T., Nowrouzezahrai, D., Křivánek, J., Jarosz, W.: Integral formulations of volumetric transmittance. ACM Trans. Graph. 38(6), 1–17 (2019)
Geva, A., Schechner, Y.Y., Chernyak, Y., Gupta, R.: X-ray computed tomography through scatter. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 37–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_3
Gkioulekas, I., Levin, A., Zickler, T.: An evaluation of computational imaging techniques for heterogeneous inverse scattering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 685–701. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_42
Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin, A.: Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32(6), 162 (2013)
Gorbunov, M.E., Sokolovky, S., Bengtsson, L.: Space refractive tomography of the atmosphere: modeling of direct and inverse problems (1996)
Gregson, J., Krimerman, M., Hullin, M.B., Heidrich, W.: Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graph. 31(4), 1–52 (2012)
Holodovsky, V., Schechner, Y.Y., Levin, A., Levis, A., Aides, A.: In-situ multi-view multi-scattering stochastic tomography. In: ICCP, pp. 1–12. IEEE (2016)
Iwabuchi, H.: Efficient Monte Carlo methods for radiative transfer modeling. J. Atmos. Sci. 63(9), 2324–2339 (2006)
Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.org
Kaftory, R., Schechner, Y.Y., Zeevi, Y.Y.: Variational distance-dependent image restoration. In: CVPR, pp. 1–8. IEEE (2007)
Kalashnikova, O.V., Garay, M.J., Davis, A.B., Diner, D.J., Martonchik, J.V.: Sensitivity of multi-angle photo-polarimetry to vertical layering and mixing of absorbing aerosols: quantifying measurement uncertainties. J. Quant. Spectrosc. Radiat. Transf. 112(13), 2149–2163 (2011)
Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: CVPR, pp. 3907–3916. IEEE (2018)
Khungurn, P., Schroeder, D., Zhao, S., Bala, K., Marschner, S.: Matching real fabrics with micro-appearance models. ACM Trans. Graph. 35(1), 1–1 (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kokhanovsky, A.A.: Light Scattering Media Optics. Springer, Heidelberg (2004)
Kratz, L., Nishino, K.: Factorizing scene albedo and depth from a single foggy image. In: ICCV, pp. 1701–1708. IEEE (2009)
Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vis. 38(3), 199–218 (2000)
Levis, A., Aides, A.: pyshdom (2019). https://github.com/aviadlevis/pyshdom
Levis, A., Schechner, Y.Y., Aides, A., Davis, A.B.: Airborne three-dimensional cloud tomography. In: ICCV, pp. 3379–3387. IEEE (2015)
Levis, A., Schechner, Y.Y., Davis, A.B.: Multiple-scattering microphysics tomography. In: CVPR, pp. 6740–6749. IEEE (2017)
Levis, A., Schechner, Y.Y., Davis, A.B., Loveridge, J.: Multi-view polarimetric scattering cloud tomography and retrieval of droplet size. arXiv preprint arXiv:2005.11423 (2020)
Lu, M.-L., et al.: Aerosol-cloud relationships in continental shallow cumulus. J. Geophys. Res. 113, D15201 (2008). https://doi.org/10.1029/2007JD009354
Marshak, A., Davis, A.: 3D Radiative Transfer in Cloudy Atmospheres. Springer, Heidelberg (2005)
Martonchik, J.V., et al.: Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans. Geosci. Remote Sens. 36(4), 1212–1227 (1998)
Matheou, G., Chung, D.: Large-eddy simulation of stratified turbulence. Part ii: application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci. 71(12), 4439–4460 (2014)
Mayer, B.: Radiative transfer in the cloudy atmosphere. In: EPJ Web of Conferences, vol. 1, pp. 75–99. EDP Sciences (2009)
McFarlane, S.A., Grabowski, W.W.: Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing. Geophys. Res. Lett. 34, L06808 (2007). https://doi.org/10.1029/2006GL028767
Messer, H., Zinevich, A., Alpert, P.: Environmental sensor networks using existing wireless communication systems for rainfall and wind velocity measurements. Instrum. Meas. Mag. 15(2), 32–38 (2012)
Mobley, C.D.: Light and Water: Radiative Transfer in Natural Waters. Academic Press, Cambridge (1994)
Narasimhan, S.G., Ramamoorthi, R., Nayar, S.K.: Analytic rendering of multiple scattering in participating media. Technical report, Columbia University (2004)
Narasimhan, S.G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S.K., Wann-Jensen, H.: Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25(3), 1003–1012 (2006)
Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vis. 48(3), 233–254 (2002)
Narasimhan, S.G., Nayar, S.K.: Interactive (de) weathering of an image using physical models. In: IEEE Workshop on Color and Photometric Methods in Computer Vision, vol. 6, p. 1. France (2003)
Narasimhan, S.G., Nayar, S.K., Sun, B., Koppal, S.J.: Structured light in scattering media. In: ICCV, vol. 1, pp. 420–427. IEEE (2005)
Nguyen-Phuoc, T.H., Li, C., Balaban, S., Yang, Y.: RenderNet: a deep convolutional network for differentiable rendering from 3D shapes. In: NeurIPS, pp. 7891–7901 (2018)
Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph. 38(6) (2019). https://doi.org/10.1145/3355089.3356498
Novák, J., Georgiev, I., Hanika, J., Jarosz, W.: Monte Carlo methods for volumetric light transport simulation. In: Computer Graphics Forum, vol. 37, pp. 551–576. Wiley Online Library (2018)
Okabe, T., Sato, I., Sato, Y.: Spherical harmonics vs. haar wavelets: basis for recovering illumination from cast shadows. In: CVPR, vol. 1, pp. 50–57. IEEE (2004)
Pfeiffer, G.T., Sato, Y.: On stochastic optimization methods for Monte Carlo least-squares problems. arXiv preprint arXiv:1804.10079 (2018)
Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: from Theory to Implementation. Morgan Kaufmann, Burlington (2016)
Schaul, L., Fredembach, C., Süsstrunk, S.: Color image dehazing using the near-infrared. In: ICIP, pp. 1629–1632. IEEE (2009)
Schilling, K., Schechner, Y.Y., Koren, I.: CloudCT - computed tomography of clouds by a small satellite formation. In: IAA symposium on Small Satellites for Earth Observation (2019)
Sheinin, M., Schechner, Y.Y.: The next best underwater view. In: CVPR, pp. 3764–3773. IEEE (2016)
Spier, O., Treibitz, T., Gilboa, G.: In situ target-less calibration of turbid media. In: ICCP, pp. 1–9. IEEE (2017)
Vainiger, A., Schechner, Y.Y., Treibitz, T., Avni, A., Timor, D.S.: Optical wide-field tomography of sediment resuspension. Opt. Express 27(12), A766–A778 (2019)
Villefranque, N., et al.: A path-tracing Monte Carlo library for 3-D radiative transfer in highly resolved cloudy atmospheres. J. Adv. Model. Earth Syst. 11(8), 2449–2473 (2019)
Wright, T.E., Burton, M., Pyle, D.M., Caltabiano, T.: Scanning tomography of \({\rm SO}_2\) distribution in a volcanic gas plume. Geophys. Res. Lett. 35, L17811 (2008). https://doi.org/10.1029/2008GL034640
Zhang, S., Xue, H., Feingold, G.: Vertical profiles of droplet effective radius in shallow convective clouds. Atmos. Chem. Phys. 11(10), 4633–4644 (2011)
Acknowledgments
We thank Ilan Koren, Eshkol Eytan Liebeskind, and Tom Dror-Schwartz for useful discussions. We thank Johanan Erez, Ina Talmon and Daniel Yagodin for technical support. Yoav Schechner is the Mark and Diane Seiden Chair in Science at the Technion. He is a Landau Fellow - supported by the Taub Foundation. His work was conducted in the Ollendorff Minerva Center. Minvera is funded through the BMBF. This research is funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (grant agreement No 810370: CloudCT). Aviad Levis is a Zuckerman Postdoctoral Fellow.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Loeub, T., Levis, A., Holodovsky, V., Schechner, Y.Y. (2020). Monotonicity Prior for Cloud Tomography. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-58523-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58522-8
Online ISBN: 978-3-030-58523-5
eBook Packages: Computer ScienceComputer Science (R0)