Skip to main content

Monotonicity Prior for Cloud Tomography

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

Abstract

We introduce a differentiable monotonicity prior, useful to express signals of monotonic tendency. An important natural signal of this tendency is the optical extinction coefficient, as a function of altitude in a cloud. Cloud droplets become larger as vapor condenses on them in an updraft. Reconstruction of the volumetric structure of clouds is important for climate research. Data for such reconstruction is multi-view images of each cloud taken simultaneously. This acquisition mode is expected by upcoming future spaceborne imagers. We achieve three-dimensional volumetric reconstruction through stochastic scattering tomography, which is based on optimization of a cost function. Part of the cost is the monotonicity prior, which helps to improve the reconstruction quality. The stochastic tomography is based on Monte-Carlo (MC) radiative transfer. It is formulated and implemented in a coarse-to-fine form, making it scalable to large fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The factor \(Q_\text {eff}(r)\) depends on the wavelength \(\lambda \). For clouds, typically \(r\gg \lambda \). Then, it is reasonable to neglect the dependency of \(Q_\text {eff}\) on r and \(\lambda \) [35].

References

  1. Aides, A., Levis, A., Holodovsky, V., Schechner, Y.Y., Althausen, D., Vainiger, A.: Distributed sky imaging radiometry and tomography. In: ICCP, pp. 1–12. IEEE (2020)

    Google Scholar 

  2. Aides, A., Schechner, Y.Y., Holodovsky, V., Garay, M.J., Davis, A.B.: Multi sky-view 3D aerosol distribution recovery. Opt. Express 21(22), 25820–25833 (2013)

    Article  Google Scholar 

  3. Alterman, M., Schechner, Y.Y., Vo, M., Narasimhan, S.G.: Passive tomography of turbulence strength. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 47–60. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_4

    Chapter  Google Scholar 

  4. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 218–233 (2003)

    Article  Google Scholar 

  5. Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: ICCP, pp. 1–9. IEEE (2017)

    Google Scholar 

  6. Binzoni, T., Leung, T.S., Gandjbakhche, A.H., Ruefenacht, D., Delpy, D.: The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics. Phys. Med. Biol. 51(17), N313 (2006)

    Article  Google Scholar 

  7. Chung, D., Matheou, G.: Large-eddy simulation of stratified turbulence. Part i: a vortex-based subgrid-scale model. J. Atmos. Sci. 71(5), 1863–1879 (2014)

    Article  Google Scholar 

  8. Davis, C., Emde, C., Harwood, R.: A 3-D polarized reversed Monte Carlo radiative transfer model for Millimeter and submillimeter passive remote sensing in cloudy atmospheres. IEEE Trans. Geosci. Remote Sens. 43(5), 1096–1101 (2005)

    Article  Google Scholar 

  9. Deng, X., Jiao, S., Bitterli, B., Jarosz, W.: Photon surfaces for robust, unbiased volumetric density estimation. ACM Trans. Graph. 38(4), 46 (2019)

    Article  Google Scholar 

  10. Diner, D.J., Martonchik, J.V.: Atmospheric transmittance from spacecraft using multiple view angle imagery. Appl. Opt. 24(21), 3503–3511 (1985)

    Article  Google Scholar 

  11. Evans, K.F.: The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci. 55(3), 429–446 (1998)

    Article  Google Scholar 

  12. Frisvad, J.R.: Importance sampling the Rayleigh phase function. JOSA 28(12), 2436–2441 (2011)

    Article  Google Scholar 

  13. Georgiev, I., Misso, Z., Hachisuka, T., Nowrouzezahrai, D., Křivánek, J., Jarosz, W.: Integral formulations of volumetric transmittance. ACM Trans. Graph. 38(6), 1–17 (2019)

    Article  Google Scholar 

  14. Geva, A., Schechner, Y.Y., Chernyak, Y., Gupta, R.: X-ray computed tomography through scatter. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 37–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_3

    Chapter  Google Scholar 

  15. Gkioulekas, I., Levin, A., Zickler, T.: An evaluation of computational imaging techniques for heterogeneous inverse scattering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 685–701. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_42

    Chapter  Google Scholar 

  16. Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin, A.: Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32(6), 162 (2013)

    Article  Google Scholar 

  17. Gorbunov, M.E., Sokolovky, S., Bengtsson, L.: Space refractive tomography of the atmosphere: modeling of direct and inverse problems (1996)

    Google Scholar 

  18. Gregson, J., Krimerman, M., Hullin, M.B., Heidrich, W.: Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graph. 31(4), 1–52 (2012)

    Article  Google Scholar 

  19. Holodovsky, V., Schechner, Y.Y., Levin, A., Levis, A., Aides, A.: In-situ multi-view multi-scattering stochastic tomography. In: ICCP, pp. 1–12. IEEE (2016)

    Google Scholar 

  20. Iwabuchi, H.: Efficient Monte Carlo methods for radiative transfer modeling. J. Atmos. Sci. 63(9), 2324–2339 (2006)

    Article  Google Scholar 

  21. Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.org

  22. Kaftory, R., Schechner, Y.Y., Zeevi, Y.Y.: Variational distance-dependent image restoration. In: CVPR, pp. 1–8. IEEE (2007)

    Google Scholar 

  23. Kalashnikova, O.V., Garay, M.J., Davis, A.B., Diner, D.J., Martonchik, J.V.: Sensitivity of multi-angle photo-polarimetry to vertical layering and mixing of absorbing aerosols: quantifying measurement uncertainties. J. Quant. Spectrosc. Radiat. Transf. 112(13), 2149–2163 (2011)

    Article  Google Scholar 

  24. Kato, H., Ushiku, Y., Harada, T.: Neural 3D mesh renderer. In: CVPR, pp. 3907–3916. IEEE (2018)

    Google Scholar 

  25. Khungurn, P., Schroeder, D., Zhao, S., Bala, K., Marschner, S.: Matching real fabrics with micro-appearance models. ACM Trans. Graph. 35(1), 1–1 (2015)

    Article  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  27. Kokhanovsky, A.A.: Light Scattering Media Optics. Springer, Heidelberg (2004)

    Google Scholar 

  28. Kratz, L., Nishino, K.: Factorizing scene albedo and depth from a single foggy image. In: ICCV, pp. 1701–1708. IEEE (2009)

    Google Scholar 

  29. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vis. 38(3), 199–218 (2000)

    Article  Google Scholar 

  30. Levis, A., Aides, A.: pyshdom (2019). https://github.com/aviadlevis/pyshdom

  31. Levis, A., Schechner, Y.Y., Aides, A., Davis, A.B.: Airborne three-dimensional cloud tomography. In: ICCV, pp. 3379–3387. IEEE (2015)

    Google Scholar 

  32. Levis, A., Schechner, Y.Y., Davis, A.B.: Multiple-scattering microphysics tomography. In: CVPR, pp. 6740–6749. IEEE (2017)

    Google Scholar 

  33. Levis, A., Schechner, Y.Y., Davis, A.B., Loveridge, J.: Multi-view polarimetric scattering cloud tomography and retrieval of droplet size. arXiv preprint arXiv:2005.11423 (2020)

  34. Lu, M.-L., et al.: Aerosol-cloud relationships in continental shallow cumulus. J. Geophys. Res. 113, D15201 (2008). https://doi.org/10.1029/2007JD009354

  35. Marshak, A., Davis, A.: 3D Radiative Transfer in Cloudy Atmospheres. Springer, Heidelberg (2005)

    Book  Google Scholar 

  36. Martonchik, J.V., et al.: Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans. Geosci. Remote Sens. 36(4), 1212–1227 (1998)

    Article  Google Scholar 

  37. Matheou, G., Chung, D.: Large-eddy simulation of stratified turbulence. Part ii: application of the stretched-vortex model to the atmospheric boundary layer. J. Atmos. Sci. 71(12), 4439–4460 (2014)

    Article  Google Scholar 

  38. Mayer, B.: Radiative transfer in the cloudy atmosphere. In: EPJ Web of Conferences, vol. 1, pp. 75–99. EDP Sciences (2009)

    Google Scholar 

  39. McFarlane, S.A., Grabowski, W.W.: Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing. Geophys. Res. Lett. 34, L06808 (2007). https://doi.org/10.1029/2006GL028767

  40. Messer, H., Zinevich, A., Alpert, P.: Environmental sensor networks using existing wireless communication systems for rainfall and wind velocity measurements. Instrum. Meas. Mag. 15(2), 32–38 (2012)

    Google Scholar 

  41. Mobley, C.D.: Light and Water: Radiative Transfer in Natural Waters. Academic Press, Cambridge (1994)

    Google Scholar 

  42. Narasimhan, S.G., Ramamoorthi, R., Nayar, S.K.: Analytic rendering of multiple scattering in participating media. Technical report, Columbia University (2004)

    Google Scholar 

  43. Narasimhan, S.G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S.K., Wann-Jensen, H.: Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25(3), 1003–1012 (2006)

    Article  Google Scholar 

  44. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vis. 48(3), 233–254 (2002)

    Article  Google Scholar 

  45. Narasimhan, S.G., Nayar, S.K.: Interactive (de) weathering of an image using physical models. In: IEEE Workshop on Color and Photometric Methods in Computer Vision, vol. 6, p. 1. France (2003)

    Google Scholar 

  46. Narasimhan, S.G., Nayar, S.K., Sun, B., Koppal, S.J.: Structured light in scattering media. In: ICCV, vol. 1, pp. 420–427. IEEE (2005)

    Google Scholar 

  47. Nguyen-Phuoc, T.H., Li, C., Balaban, S., Yang, Y.: RenderNet: a deep convolutional network for differentiable rendering from 3D shapes. In: NeurIPS, pp. 7891–7901 (2018)

    Google Scholar 

  48. Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph. 38(6) (2019). https://doi.org/10.1145/3355089.3356498

  49. Novák, J., Georgiev, I., Hanika, J., Jarosz, W.: Monte Carlo methods for volumetric light transport simulation. In: Computer Graphics Forum, vol. 37, pp. 551–576. Wiley Online Library (2018)

    Google Scholar 

  50. Okabe, T., Sato, I., Sato, Y.: Spherical harmonics vs. haar wavelets: basis for recovering illumination from cast shadows. In: CVPR, vol. 1, pp. 50–57. IEEE (2004)

    Google Scholar 

  51. Pfeiffer, G.T., Sato, Y.: On stochastic optimization methods for Monte Carlo least-squares problems. arXiv preprint arXiv:1804.10079 (2018)

  52. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: from Theory to Implementation. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  53. Schaul, L., Fredembach, C., Süsstrunk, S.: Color image dehazing using the near-infrared. In: ICIP, pp. 1629–1632. IEEE (2009)

    Google Scholar 

  54. Schilling, K., Schechner, Y.Y., Koren, I.: CloudCT - computed tomography of clouds by a small satellite formation. In: IAA symposium on Small Satellites for Earth Observation (2019)

    Google Scholar 

  55. Sheinin, M., Schechner, Y.Y.: The next best underwater view. In: CVPR, pp. 3764–3773. IEEE (2016)

    Google Scholar 

  56. Spier, O., Treibitz, T., Gilboa, G.: In situ target-less calibration of turbid media. In: ICCP, pp. 1–9. IEEE (2017)

    Google Scholar 

  57. Vainiger, A., Schechner, Y.Y., Treibitz, T., Avni, A., Timor, D.S.: Optical wide-field tomography of sediment resuspension. Opt. Express 27(12), A766–A778 (2019)

    Article  Google Scholar 

  58. Villefranque, N., et al.: A path-tracing Monte Carlo library for 3-D radiative transfer in highly resolved cloudy atmospheres. J. Adv. Model. Earth Syst. 11(8), 2449–2473 (2019)

    Article  Google Scholar 

  59. Wright, T.E., Burton, M., Pyle, D.M., Caltabiano, T.: Scanning tomography of \({\rm SO}_2\) distribution in a volcanic gas plume. Geophys. Res. Lett. 35, L17811 (2008). https://doi.org/10.1029/2008GL034640

  60. Zhang, S., Xue, H., Feingold, G.: Vertical profiles of droplet effective radius in shallow convective clouds. Atmos. Chem. Phys. 11(10), 4633–4644 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ilan Koren, Eshkol Eytan Liebeskind, and Tom Dror-Schwartz for useful discussions. We thank Johanan Erez, Ina Talmon and Daniel Yagodin for technical support. Yoav Schechner is the Mark and Diane Seiden Chair in Science at the Technion. He is a Landau Fellow - supported by the Taub Foundation. His work was conducted in the Ollendorff Minerva Center. Minvera is funded through the BMBF. This research is funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (grant agreement No 810370: CloudCT). Aviad Levis is a Zuckerman Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tamar Loeub , Aviad Levis , Vadim Holodovsky or Yoav Y. Schechner .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 655 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loeub, T., Levis, A., Holodovsky, V., Schechner, Y.Y. (2020). Monotonicity Prior for Cloud Tomography. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics