Abstract
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior for solving various inverse image restoration tasks. Instead of using hand-designed architectures, we propose to search for neural architectures that capture stronger image priors. Building upon a generic U-Net architecture, our core contribution lies in designing new search spaces for (1) an upsampling cell and (2) a pattern of cross-scale residual connections. We search for an improved network by leveraging an existing neural architecture search algorithm (using reinforcement learning with a recurrent neural network controller). We validate the effectiveness of our method via a wide variety of applications, including image restoration, dehazing, image-to-image translation, and matrix factorization. Extensive experimental results show that our algorithm performs favorably against state-of-the-art learning-free approaches and reaches competitive performance with existing learning-based methods in some cases.
Y.-C. Chen and C. Gao—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We originally plan to conduct a quantitative evaluation using the O-HAZE dataset [4]. Unfortunately, using the provided source code and email correspondences with the authors, we were still unable to reproduce the results of DoubleDIP on this dataset. We thus did not report quantitative results on dehazing in this work.
References
Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: CVPRW (2017)
Ahmed, K., Torresani, L.: MaskConnect: connectivity learning by gradient descent. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 362–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_22
Aittala, M., et al.: Computational mirrors: blind inverse light transport by deep matrix factorization. In: NeurIPS (2019)
Ancuti, C.O., Ancuti, C., Timofte, R., De Vleeschouwer, C.: O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images. In: CVPRW (2018)
Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. Trans. Neural Netw. 5, 54–65 (1994)
Athar, S., Burnaev, E., Lempitsky, V.: Latent convolutional models. In: ICLR (2019)
Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. In: ICLR (2017)
Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. TIP 18, 2419–2434 (2009)
Berthelot, D., Schumm, T., Metz, L.: Began: boundary equilibrium generative adversarial networks. arXiv (2017)
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)
Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latent space of generative networks. In: ICML (2018)
Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: CVPR (2012)
Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network transformation. In: AAAI (2018)
Chen, L.C., et al.: Searching for efficient multi-scale architectures for dense image prediction. In: NeurIPS (2018)
Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: CrDoCo: pixel-level domain transfer with cross-domain consistency. In: CVPR (2019)
Cheng, Z., Gadelha, M., Maji, S., Sheldon, D.: A Bayesian perspective on the deep image prior. In: CVPR (2019)
Chu, X., Zhang, B., Ma, H., Xu, R., Li, J., Li, Q.: Fast, accurate and lightweight super-resolution with neural architecture search. arXiv (2019)
Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3D transform-domain collaborative filtering. In: European Signal Processing Conference (2007)
Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: CVPR (2019)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38, 295–307 (2015)
Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)
Gandelsman, Y., Shocher, A., Irani, M.: “Double-DIP”: unsupervised image decomposition via coupled deep-image-priors. In: CVPR (2019)
Gao, H., Wang, Z., Ji, S.: ChannelNets: compact and efficient convolutional neural networks via channel-wise convolutions. In: NeurIPS (2018)
Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR (2019)
Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)
Gong, X., Chang, S., Jiang, Y., Wang, Z.: AutoGAN: neural architecture search for generative adversarial networks. In: ICCV (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)
Guo, J., Li, Y., Lin, W., Chen, Y., Li, J.: Network decoupling: from regular to depthwise separable convolutions. In: BMVC (2018)
Guo, Y., Li, Y., Wang, L., Rosing, T.: Depthwise convolution is all you need for learning multiple visual domains. In: AAAI (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Heckel, R., Hand, P.: Deep decoder: Concise image representations from untrained non-convolutional networks. In: ICLR (2019)
Heide, F., Heidrich, W., Wetzstein, G.: Fast and flexible convolutional sparse coding. In: CVPR (2015)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NeurIPS (2017)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)
Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Jia, X., Chang, H., Tuytelaars, T.: Super-resolution with deep adaptive image resampling. arXiv (2017)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: ICLR (2018)
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: NeurIPS (2017)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)
Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: CVPR (2017)
Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. TPAMI 41, 2599–2613 (2018)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)
Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3
Lee, H.-Y., et al.: DRIT++: diverse image-to-image translation via disentangled representations. Int. J. Comput. Vis. 128(10), 2402–2417 (2020). https://doi.org/10.1007/s11263-019-01284-z
Lefkimmiatis, S.: Non-local color image denoising with convolutional neural networks. In: CVPR (2017)
Li, Y., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep joint image filtering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_10
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPR (2017)
Liu, C., et al.: Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation. In: CVPR (2019)
Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchial representations for efficient architecture search. In: ICLR (2018)
Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. In: ICLR (2019)
Liu, Y.L., Lai, W.S., Yang, M.H., Chuang, Y.Y., Huang, J.B.: Learning to see through obstructions. In: CVPR (2020)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
Luo, X., Huang, J., Szeliski, R., Matzen, K., Kopf, J.: Consistent video depth estimation. ACM Trans. Graph. (Proc. ACM SIGGRAPH) (2020)
Mataev, G., Milanfar, P., Elad, M.: DeepRED: deep image prior powered by red. In: ICCVW (2019)
Miikkulainen, R., et al.: Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing (2019)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
Nekrasov, V., Chen, H., Shen, C., Reid, I.: Fast neural architecture search of compact semantic segmentation models via auxiliary cells. In: CVPR (2019)
Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1, e3 (2016)
Papyan, V., Romano, Y., Sulam, J., Elad, M.: Convolutional dictionary learning via local processing. In: ICCV (2017)
Qiu, Y., Wang, R., Tao, D., Cheng, J.: Embedded block residual network: a recursive restoration model for single-image super-resolution. In: ICCV (2019)
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: ICML (2018)
Real, E., et al.: Large-scale evolution of image classifiers. In: ICML (2017)
Romano, Y., Elad, M., Milanfar, P.: The little engine that could: regularization by denoising (RED). SIAM J. Imaging Sci. 10, 1804–1844 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Saxe, A.M., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., Ng, A.Y.: On random weights and unsupervised feature learning. In: ICML (2011)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15, 185–212 (2009)
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002)
Suganuma, M., Ozay, M., Okatani, T.: Exploiting the potential of standard convolutional autoencoders for image restoration by evolutionary search. In: ICML (2018)
Sun, Q., Ma, L., Joon Oh, S., Van Gool, L., Schiele, B., Fritz, M.: Natural and effective obfuscation by head inpainting. In: CVPR (2018)
Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A.A., Hardt, M.: Test-time training for out-of-distribution generalization. In: ICML (2020)
Tan, M., Chen, B., Pang, R., Vasudevan, V., Le, Q.V.: MnasNet: platform-aware neural architecture search for mobile. In: CVPR (2019)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR (2018)
Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: CARAFE: content-aware reassembly of features. In: ICCV (2019)
Wojna, Z., et al.: The devil is in the decoder: classification, regression and GANs. Int. J. Comput. Vis. 127(11), 1694–1706 (2019). https://doi.org/10.1007/s11263-019-01170-8
Wojna, Z., et al.: The devil is in the decoder. In: BMVC (2017)
Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: NeurIPS (2012)
Xie, L., Yuille, A.: Genetic CNN. In: ICCV (2017)
Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. In: ICMLW (2015)
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv (2015)
Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: ICCV (2011)
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18
Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)
Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network architecture generation. In: CVPR (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, YC., Gao, C., Robb, E., Huang, JB. (2020). NAS-DIP: Learning Deep Image Prior with Neural Architecture Search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-58523-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58522-8
Online ISBN: 978-3-030-58523-5
eBook Packages: Computer ScienceComputer Science (R0)