Abstract
Recent state-of-the-art semi-supervised learning (SSL) methods use a combination of image-based transformations and consistency regularization as core components. Such methods, however, are limited to simple transformations such as traditional data augmentation or convex combinations of two images. In this paper, we propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations. Importantly, these transformations also use information from both within-class and across-class prototypical representations that we extract through clustering. We use features already computed across iterations by storing them in a memory bank, obviating the need for significant extra computation. These transformations, combined with traditional image-based augmentation, are then used as part of the consistency-based regularization loss. We demonstrate that our method is comparable to current state of art for smaller datasets (CIFAR-10 and SVHN) while being able to scale up to larger datasets such as CIFAR-100 and mini-Imagenet where we achieve significant gains over the state of art (e.g., absolute 17.44% gain on mini-ImageNet). We further test our method on DomainNet, demonstrating better robustness to out-of-domain unlabeled data, and perform rigorous ablations and analysis to validate the method. Code is available here: https://sites.google.com/view/chiawen-kuo/home/featmatch.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. arXiv preprint arXiv:1908.02983 (2019)
Athiwaratkun, B., Finzi, M., Izmailov, P., Wilson, A.G.: Improving consistency-based semi-supervised learning with weight averaging. arXiv preprint arXiv:1806.05594, 2 (2018)
Berthelot, D., et al.: Remixmatch: semi-supervised learning with distribution alignment and augmentation anchoring. In: Proceedings of International Conference on Learning Representations (ICLR) (2020)
Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 5050–5060 (2019)
Chen, Y., Zhu, X., Gong, S.: Semi-supervised deep learning with memory. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 275–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_17
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated data augmentation with a reduced search space. arXiv preprint arXiv:1909.13719 (2019)
Guo, H., Mao, Y., Zhang, R.: Mixup as locally linear out-of-manifold regularization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3714–3722 (2019)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:AugMix: a simple data processing method to improve robustness and uncertainty. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)
Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5070–5079 (2019)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)
Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: Proceedings of International Conference on Learning Representations (ICLR) (2017)
Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 2 (2013)
Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B.: Smooth neighbors on teacher graphs for semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8896–8905 (2018)
Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1406–1415 (2019)
Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 142–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_9
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: International Conference on Learning Representations (ICLR) (2017)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 1163–1171 (2016)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)
Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.: On mixup training: improved calibration and predictive uncertainty for deep neural networks. In: Advances in Neural Information Processing Systems, pp. 13888–13899 (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Verma, V., Lamb, A., Beckham, C., Courville, A., Mitliagkis, I., Bengio, Y.: Manifold mixup: encouraging meaningful on-manifold interpolation as a regularizer. Stat, 1050, 13 (2018)
Verma, V., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. arXiv preprint arXiv:1903.03825 (2019)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)
Yu, B., Wu, J., Ma, J., Zhu, Z.: Tangent-normal adversarial regularization for semi-supervised learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10676–10684 (2019)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6023–6032 (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: Proceedings of International Conference on Learning Representations (ICLR) (2018)
Acknowledgement
This work was funded by DARPA’s Learning with Less Labels (LwLL) program under agreement HR0011-18-S-0044 and DARPA’s Lifelong Learning Machines (L2M) program under Cooperative Agreement HR0011-18-2-0019.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kuo, CW., Ma, CY., Huang, JB., Kira, Z. (2020). FeatMatch: Feature-Based Augmentation for Semi-supervised Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-58523-5_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58522-8
Online ISBN: 978-3-030-58523-5
eBook Packages: Computer ScienceComputer Science (R0)