Skip to main content

LIRA: Lifelong Image Restoration from Unknown Blended Distortions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Most existing image restoration networks are designed in a disposable way and catastrophically forget previously learned distortions when trained on a new distortion removal task. To alleviate this problem, we raise the novel lifelong image restoration problem for blended distortions. We first design a base fork-join model in which multiple pre-trained expert models specializing in individual distortion removal task work cooperatively and adaptively to handle blended distortions. When the input is degraded by a new distortion, inspired by adult neurogenesis in human memory system, we develop a neural growing strategy where the previously trained model can incorporate a new expert branch and continually accumulate new knowledge without interfering with learned knowledge. Experimental results show that the proposed approach can not only achieve state-of-the-art performance on blended distortions removal tasks in both PSNR/SSIM metrics, but also maintain old expertise while learning new restoration tasks.

J. Liu and J. Lin—Authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, W.C., Robins, A.: Memory retention-the synaptic stability versus plasticity dilemma. Trends Neurosci. 28(2), 73–78 (2005)

    Article  Google Scholar 

  2. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  3. Aimone, J.B., Deng, W., Gage, F.H.: Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70(4), 589–596 (2011)

    Article  Google Scholar 

  4. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 139–154 (2018)

    Google Scholar 

  5. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  6. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  7. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 233–248 (2018)

    Google Scholar 

  8. Chen, Y., Shi, F., Christodoulou, A.G., Xie, Y., Zhou, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 91–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_11

    Chapter  Google Scholar 

  9. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5138–5146 (2019)

    Google Scholar 

  10. Gondara, L.: Medical image denoising using convolutional denoising autoencoders. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 241–246. IEEE (2016)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  14. Jetley, S., Lord, N.A., Lee, N., Torr, P.H.: Learn to pay attention. arXiv preprint arXiv:1804.02391 (2018)

  15. Kamra, N., Gupta, U., Liu, Y.: Deep generative dual memory network for continual learning. arXiv preprint arXiv:1710.10368 (2017)

  16. Kee, N., Teixeira, C.M., Wang, A.H., Frankland, P.W.: Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 10(3), 355 (2007)

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  19. Lefkimmiatis, S.: Universal denoising networks: a novel CNN architecture for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3204–3213 (2018)

    Google Scholar 

  20. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks (2019)

    Google Scholar 

  21. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  22. Lin, J., Zhou, T., Chen, Z.: Multi-scale face restoration with sequential gating ensemble network. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  23. Liu, X., Suganuma, M., Okatani, T.: Joint learning of multiple image restoration tasks. arXiv preprint arXiv:1907.04508v1 (2019)

  24. Liu, X., Suganuma, M., Sun, Z., Okatani, T.: Dual residual networks leveraging the potential of paired operations for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7007–7016 (2019)

    Google Scholar 

  25. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, pp. 6467–6476 (2017)

    Google Scholar 

  26. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 76(20), 21811–21838 (2017)

    Article  Google Scholar 

  27. McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102(3), 419 (1995)

    Article  Google Scholar 

  28. McCloskey, M., Cohen, N.: Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. Adv. Res. Theory 24(C), 109–165 (1989). https://doi.org/10.1016/S0079-7421(08)60536-8

  29. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  30. Mermillod, M., Bugaiska, A., Bonin, P.: The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects. Front. Psychol. 4, 504 (2013)

    Article  Google Scholar 

  31. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  32. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  33. Ren, W., et al.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018)

    Google Scholar 

  34. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7(2), 123–146 (1995)

    Article  Google Scholar 

  35. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  36. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  37. Schmidt-Hieber, C., Jonas, P., Bischofberger, J.: Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429(6988), 184 (2004)

    Article  Google Scholar 

  38. Serrà, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. arXiv preprint arXiv:1801.01423 (2018)

  39. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  40. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: Advances in Neural Information Processing Systems, pp. 2990–2999 (2017)

    Google Scholar 

  41. Suganuma, M., Liu, X., Okatani, T.: Attention-based adaptive selection of operations for image restoration in the presence of unknown combined distortions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9039–9048 (2019)

    Google Scholar 

  42. Svoboda, P., Hradiš, M., Maršík, L., Zemcík, P.: CNN for license plate motion deblurring. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3832–3836. IEEE (2016)

    Google Scholar 

  43. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  44. Wu, C., Herranz, L., Liu, X., van de Weijer, J., Raducanu, B., et al.: Memory replay GANs: learning to generate new categories without forgetting. In: Advances In Neural Information Processing Systems, pp. 5962–5972 (2018)

    Google Scholar 

  45. Wu, Y., et al.: Incremental classifier learning with generative adversarial networks. arXiv preprint arXiv:1802.00853 (2018)

  46. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547 (2017)

  47. Yu, K., Dong, C., Lin, L., Change Loy, C.: Crafting a toolchain for image restoration by deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2443–2452 (2018)

    Google Scholar 

  48. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  49. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

    Google Scholar 

  50. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  51. Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Sig. Process. 90(3), 848–859 (2010)

    Article  Google Scholar 

  52. Zhang, S., Zheng, D., Hu, X., Yang, M.: Bidirectional long short-term memory networks for relation classification. In: Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation, pp. 73–78 (2015)

    Google Scholar 

  53. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC under Grant U1908209, 61632001 and the National Key Research and Development Program of China 2018AAA0101400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibo Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4592 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Lin, J., Li, X., Zhou, W., Liu, S., Chen, Z. (2020). LIRA: Lifelong Image Restoration from Unknown Blended Distortions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics