Skip to main content

LandscapeAR: Large Scale Outdoor Augmented Reality by Matching Photographs with Terrain Models Using Learned Descriptors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

We introduce a solution to large scale Augmented Reality for outdoor scenes by registering camera images to textured Digital Elevation Models (DEMs). To accommodate the inherent differences in appearance between real images and DEMs, we train a cross-domain feature descriptor using Structure From Motion (SFM) guided reconstructions to acquire training data. Our method runs efficiently on a mobile device and outperforms existing learned and hand-designed feature descriptors for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cphoto.fit.vutbr.cz/LandscapeAR/.

References

  1. Aguilera, C.A., Aguilera, F.J., Sappa, A.D., Toledo, R.: Learning cross-spectral similarity measures with deep convolutional neural networks. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 267–275 (2016). https://doi.org/10.1109/CVPRW.2016.40

  2. Aguilera, C.A., Sappa, A.D., Aguilera, C., Toledo, R.: Cross-spectral local descriptors via quadruplet network. Sensors (Switzerland) 17(4), 1–14 (2017). https://doi.org/10.3390/s17040873

    Article  Google Scholar 

  3. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. Arxiv (2015). http://arxiv.org/abs/1511.07247

  4. Baboud, L., Čadík, M., Eisemann, E., Seidel, H.P.: Automatic photo-to-terrain alignment for the annotation of mountain pictures. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 41–48. IEEE Computer Society, Washington (2011). https://doi.org/10.1109/CVPR.2011.5995727

  5. Baruch, E.B., Keller, Y.: Multimodal matching using a hybrid convolutional neural network. CoRR abs/1810.12941 (2018). http://arxiv.org/abs/1810.12941

  6. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  7. Brejcha, J., Čadík, M.: GeoPose3K: mountain landscape dataset for camera pose estimation in outdoor environments. Image Vis. Comput. 66, 1–14 (2017). https://doi.org/10.1016/j.imavis.2017.05.009

    Article  Google Scholar 

  8. Brejcha, J., Čadík, M.: Camera orientation estimation in natural scenes using semantic cues. In: 2018 International Conference on 3D Vision (3DV), pp. 208–217, September 2018. https://doi.org/10.1109/3DV.2018.00033

  9. Brejcha, J., Lukáč, M., Chen, Z., DiVerdi, S., Čadík, M.: Immersive trip reports. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST 2018, pp. 389–401. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3242587.3242653

  10. Čadík, M., Sýkora, D., Lee, S.: Automated outdoor depth-map generation and alignment. Elsevier Comput. Graph. 74, 109–118 (2018)

    Article  Google Scholar 

  11. Chen, J., Tian, J.: Real-time multi-modal rigid registration based on a novel symmetric-SIFT descriptor. Prog. Nat. Sci. 19(5), 643–651 (2009). https://doi.org/10.1016/j.pnsc.2008.06.029

    Article  Google Scholar 

  12. Dusmanu, M., et al.: D2-Net: a trainable CNN for joint detection and description of local features. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. http://arxiv.org/abs/1905.03561

  13. En, S., Lechervy, A., Jurie, F.: TS-NET: Combining modality specific and common features for multimodal patch matching. In: Proceedings - International Conference on Image Processing, ICIP, pp. 3024–3028 (2018). https://doi.org/10.1109/ICIP.2018.8451804

  14. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Georgakis, G., Karanam, S., Wu, Z., Ernst, J., Kosecka, J.: End-to-end learning of keypoint detector and descriptor for pose invariant 3D matching, February 2018. http://arxiv.org/abs/1802.07869

  16. Georgakis, G., Karanam, S., Wu, Z., Kosecka, J.: Learning local RGB-to-CAD correspondences for object pose estimation. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  17. Harwood, B., Vijay Kumar, B.G., Carneiro, G., Reid, I., Drummond, T.: Smart mining for deep metric learning. In: Proceedings of the IEEE International Conference on Computer Vision (2017). https://doi.org/10.1109/ICCV.2017.307

  18. Hasan, M., Pickering, M.R., Jia, X.: Modified sift for multi-modal remote sensing image registration. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 2348–2351, July 2012. https://doi.org/10.1109/IGARSS.2012.6351023

  19. Irani, M., Anandan, P.: Robust multi-sensor image alignment. In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 959–966, January 1998. https://doi.org/10.1109/ICCV.1998.710832

  20. Keller, Y., Averbuch, A.: Multisensor image registration via implicit similarity. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 794–801 (2006). https://doi.org/10.1109/TPAMI.2006.100

    Article  Google Scholar 

  21. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  22. Kopf, J., et al.: Deep photo: model-based photograph enhancement and viewing. In: Transactions on Graphics (Proceedings of SIGGRAPH Asia), vol. 27, no. 6, article no. 116 (2008)

    Google Scholar 

  23. Kwon, Y.P., Kim, H., Konjevod, G., McMains, S.: Dude (duality descriptor): a robust descriptor for disparate images using line segment duality. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 310–314, September 2016. https://doi.org/10.1109/ICIP.2016.7532369

  24. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vision (2009). https://doi.org/10.1007/s11263-008-0152-6

    Article  Google Scholar 

  25. Lowe, D.G., et al.: Object recognition from local scale-invariant features. In: ICCV, vol. 99, pp. 1150–1157 (1999)

    Google Scholar 

  26. Mishchuk, A., Mishkin, D., Radenović, F., Matas, J.: Working hard to know your neighbor’s margins: local descriptor learning loss. In: Advances in Neural Information Processing Systems, NIPS 2017, vol. 2017-Decem, pp. 4827–4838. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  27. Nagy, B.: A new method of improving the azimuth in mountainous terrain by skyline matching. PFG – J. Photogrammetry Remote Sens. Geoinform. Sci. 88(2), 121–131 (2020). https://doi.org/10.1007/s41064-020-00093-1

    Article  Google Scholar 

  28. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 0756–777 (2004)

    Article  Google Scholar 

  29. Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbourhood consensus networks. In: Advances in Neural Information Processing Systems, vol. 2018-Decem, pp. 1651–1662 (2018)

    Google Scholar 

  30. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the IEEE International Conference on Computer Vision (2011). https://doi.org/10.1109/ICCV.2011.6126544

  31. Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations of CNN-based absolute camera pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3302–3312 (2019)

    Google Scholar 

  32. Kim, S., Min, D., Ham, B., Ryu, S., Do, M.N., Sohn, K.: DASC: dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2103–2112, June 2015. https://doi.org/10.1109/CVPR.2015.7298822

  33. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2007. https://doi.org/10.1109/CVPR.2007.383198

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015)

    Google Scholar 

  35. Tian, Y., Fan, B., Wu, F.: L2-Net: deep learning of discriminative patch descriptor in euclidean space. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6128–6136, July 2017. https://doi.org/10.1109/CVPR.2017.649

  36. Viola, P., Wells, W.M.: Alignment by maximization of mutual information. Int. J. Comput. Vision 24(2), 137–154 (1997). https://doi.org/10.1023/A:1007958904918

    Article  Google Scholar 

  37. Wang, C.P., Wilson, K., Snavely, N.: Accurate georegistration of point clouds using geographic data. In: 2013 International Conference on 3DTV-Conference, pp. 33–40 (2013). https://doi.org/10.1109/3DV.2013.13

  38. Weyand, T., Kostrikov, I., Philbin, J.: PlaNet - photo geolocation with convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 37–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_3

    Chapter  Google Scholar 

  39. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by project no. LTAIZ19004 Deep-Learning Approach to Topographical Image Analysis; by the Ministry of Education, Youth and Sports of the Czech Republic within the activity INTER-EXCELENCE (LT), subactivity INTER-ACTION (LTA), ID: SMSM2019LTAIZ. Computational resources were partly supplied by the project e-Infrastruktura CZ (e-INFRA LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures. Satellite Imagery: Data provided by the European Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Brejcha .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 62367 KB)

Supplementary material 1 (pdf 11723 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brejcha, J., Lukáč, M., Hold-Geoffroy, Y., Wang, O., Čadík, M. (2020). LandscapeAR: Large Scale Outdoor Augmented Reality by Matching Photographs with Terrain Models Using Learned Descriptors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12374. Springer, Cham. https://doi.org/10.1007/978-3-030-58526-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58526-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58525-9

  • Online ISBN: 978-3-030-58526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics