Skip to main content

On Diverse Asynchronous Activity Anticipation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12374))

Included in the following conference series:

Abstract

We investigate the joint anticipation of long-term activity labels and their corresponding times with the aim of improving both the naturalness and diversity of predictions. We address these matters using Conditional Adversarial Generative Networks for Discrete Sequences. Central to our approach is a reexamination of the unavoidable sample quality vs. diversity tradeoff of the recently emerged Gumbel-Softmax relaxation based GAN on discrete data. In particular, we ameliorate this trade-off with a simple but effective sample distance regularizer. Moreover, we provide a unified approach to inference of activity labels and their times so that a single integrated optimization succeeds for both. With this novel approach in hand, we demonstrate the effectiveness of the resulting discrete sequential GAN on multimodal activity anticipation. We evaluate the approach on three standard datasets and show that it outperforms previous approaches in terms of both accuracy and diversity, thereby yielding a new state-of-the-art in activity anticipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Farha, Y., Gall, J.: Uncertainty-aware anticipation of activities. In: ICCVW (2019)

    Google Scholar 

  2. Abu Farha, Y., Richard, A., Gall, J.: When will you do what?-Anticipating temporal occurrences of activities. In: CVPR (2018)

    Google Scholar 

  3. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. arXiv preprint arXiv:1710.11252 (2017)

  4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  5. Dai, B., Fidler, S., Urtasun, R., Lin, D.: Towards diverse and natural image descriptions via a conditional GAN. In: ICCV (2017)

    Google Scholar 

  6. Damen, D., et al.: Scaling egocentric vision: the EPIC-KITCHENS dataset. In: ECCV (2018)

    Google Scholar 

  7. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. In: ICML (2017)

    Google Scholar 

  8. Fedus, W., Goodfellow, I., Dai, A.M.: Maskgan: better text generation via filling in the\_. arXiv preprint arXiv:1801.07736 (2018)

  9. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal residual networks for video action recognition. In: NIPS (2016)

    Google Scholar 

  10. Furnari, A., Battiato, S., Maria Farinella, G.: Leveraging uncertainty to rethink loss functions and evaluation measures for egocentric action anticipation. In: ECCVW (2018)

    Google Scholar 

  11. Gao, J., Yang, Z., Nevatia, R.: Red: reinforced encoder-decoder networks for action anticipation. In: BMVC (2017)

    Google Scholar 

  12. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AISTAT (2011)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  14. Gumbel, E.J.: Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures, vol. 33. US Government Printing Office, Washington (1948)

    Google Scholar 

  15. Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., Wang, J.: Long text generation via adversarial training with leaked information. In: AAAI (2018)

    Google Scholar 

  16. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017)

    Google Scholar 

  17. Ke, Q., Fritz, M., Schiele, B.: Time-conditioned action anticipation in one shot. In: CVPR (2019)

    Google Scholar 

  18. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Kong, Y., Tao, Z., Fu, Y.: Deep sequential context networks for action prediction. In: CVPR (2017)

    Google Scholar 

  21. Kong, Y., Tao, Z., Fu, Y.: Adversarial action prediction networks. IEEE TPAMI (2019)

    Google Scholar 

  22. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE TPAMI 38(1), 14–29 (2015)

    Article  Google Scholar 

  23. Kuehne, H., Arslan, A., Serre, T.: The language of actions: recovering the syntax and semantics of goal-directed human activities. In: CVPR (2014)

    Google Scholar 

  24. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI (2015)

    Google Scholar 

  25. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: CVPR (2017)

    Google Scholar 

  26. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  27. Lee, A.X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., Levine, S.: Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523 (2018)

  28. Li, Y., Du, N., Bengio, S.: Time-dependent representation for neural event sequence prediction. In: ICLRW (2018)

    Google Scholar 

  29. Liang, J., Jiang, L., Murphy, K., Yu, T., Hauptmann, A.: The garden of forking paths: towards multi-future trajectory prediction. In: CVPR, pp. 10508–10518 (2020)

    Google Scholar 

  30. Liang, J., Jiang, L., Niebles, J.C., Hauptmann, A.G., Fei-Fei, L.: Peeking into the future: Predicting future person activities and locations in videos. In: CVPRW, pp. 5725–5734 (2019)

    Google Scholar 

  31. Liu, S., Zhang, X., Wangni, J., Shi, J.: Normalized diversification. In: CVPR (2019)

    Google Scholar 

  32. Lukas, N., Andrew, Z., Vedaldi, A.: Future event prediction: if and when. In: CVPRW, pp. 14424–14432 (2019)

    Google Scholar 

  33. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: ICLR (2017)

    Google Scholar 

  34. Mahmud, T., Billah, M., Hasan, M., Roy-Chowdhury, A.K.: Captioning near-future activity sequences. arXiv preprint arXiv:1908.00943 (2019)

  35. Mahmud, T., Hasan, M., Roy-Chowdhury, A.K.: Joint prediction of activity labels and starting times in untrimmed videos. In: ICCV (2017)

    Google Scholar 

  36. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440 (2015)

  37. Mehrasa, N., Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: A variational auto-encoder model for stochastic point processes. In: CVPR (2019)

    Google Scholar 

  38. Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. In: CVPR, pp. 14424–14432 (2020)

    Google Scholar 

  39. Nie, W., Narodytska, N., Patel, A.: ReLGAN: relational generative adversarial networks for text generation. In: ICLR (2019)

    Google Scholar 

  40. Oord, A.V.D., et al.: Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  41. Santoro, A., et al.: Relational recurrent neural networks. In: NIPS (2018)

    Google Scholar 

  42. Schydlo, P., Rakovic, M., Jamone, L., Santos-Victor, J.: Anticipation in human-robot cooperation: a recurrent neural network approach for multiple action sequences prediction. In: ICRA (2018)

    Google Scholar 

  43. Shi, Y., Fernando, B., Hartley, R.: Action anticipation with RBF kernelized feature mapping RNN. In: ECCV (2018)

    Google Scholar 

  44. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  45. Singh, G., Saha, S., Cuzzolin, F.: Predicting action tubes. In: ECCVW (2018)

    Google Scholar 

  46. Singh, G., Saha, S., Sapienza, M., Torr, P.H., Cuzzolin, F.: Online real-time multiple spatiotemporal action localisation and prediction. In: ICCV (2017)

    Google Scholar 

  47. Stein, S., McKenna, S.J.: Combining embedded accelerometers with computer vision for recognizing food preparation activities. In: UbiComp (2013)

    Google Scholar 

  48. Sun, C., Shrivastava, A., Vondrick, C., Sukthankar, R., Murphy, K., Schmid, C.: Relational action forecasting. In: CVPR, pp. 273–283 (2019)

    Google Scholar 

  49. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS (2014)

    Google Scholar 

  50. Veselỳ, K., Ghoshal, A., Burget, L., Povey, D.: Sequence-discriminative training of deep neural networks. In: Interspeech (2013)

    Google Scholar 

  51. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: CVPR (2016)

    Google Scholar 

  52. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: ECCV (2016)

    Google Scholar 

  53. Yang, D., Hong, S., Jang, Y., Zhao, T., Lee, H.: Diversity-sensitive conditional generative adversarial networks. In: ICLR (2019)

    Google Scholar 

  54. Yeh, R.A., Schwing, A.G., Huang, J., Murphy, K.: Diverse generation for multi-agent sports games. In: CVPR, pp. 4610–4619 (2019)

    Google Scholar 

  55. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In: AAAI (2017)

    Google Scholar 

  56. Zhao, H., Wildes, R.P.: Spatiotemporal feature residual propagation for action prediction. In: ICCV (2019)

    Google Scholar 

  57. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 858 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, H., Wildes, R.P. (2020). On Diverse Asynchronous Activity Anticipation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12374. Springer, Cham. https://doi.org/10.1007/978-3-030-58526-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58526-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58525-9

  • Online ISBN: 978-3-030-58526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics