Skip to main content

Accurate Polarimetric BRDF for Real Polarization Scene Rendering

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12364))

Included in the following conference series:

Abstract

Polarization has been used to solve a lot of computer vision tasks such as Shape from Polarization (SfP). But existing methods suffer from ambiguity problems of polarization. To overcome such problems, some research works have suggested to use Convolutional Neural Network (CNN). But acquiring large scale dataset with polarization information is a very difficult task. If there is an accurate model which can describe a complicated phenomenon of polarization, we can easily produce synthetic polarized images with various situations to train CNN.

In this paper, we propose a new polarimetric BRDF (pBRDF) model. We prove its accuracy by fitting our model to measured data with variety of light and camera conditions. We render polarized images using this model and use them to estimate surface normal. Experiments show that the CNN trained by our polarized images has more accuracy than one trained by RGB only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, G.A., Hancock, E.R.: Multi-view surface reconstruction using polarization. In: IEEE International Conference on Computer Vision, vol. 1, pp. 309–316. IEEE (2005)

    Google Scholar 

  2. Atkinson, G.A., Hancock, E.R.: Polarization-based surface reconstruction via patch matching. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 495–502. IEEE (2006)

    Google Scholar 

  3. Atkinson, G.A., Hancock, E.R.: Recovery of surface orientation from diffuse polarization. IEEE Trans. Image Process. 15(6), 1653–1664 (2006)

    Article  Google Scholar 

  4. Atkinson, G.A., Hancock, E.R.: Recovering material reflectance from polarization and simulated annealing. In: Belhumeur, P., Ikeuchi, K., Prados, E., Soatto, S., Sturm, P. (eds.) Proceedings of the First International Workshop on Photometric Analysis For Computer Vision - PACV 2007, p. 8. INRIA, Rio de Janeiro (2007). https://hal.inria.fr/inria-00265255, iSBN 2-7261-1297 8

  5. Atkinson, G.A., Hancock, E.R.: Shape estimation using polarization and shading from two views. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2001–2017 (2007)

    Article  Google Scholar 

  6. Atkinson, G.A., Hancock, E.R.: Surface reconstruction using polarization and photometric stereo. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 466–473. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74272-2_58

    Chapter  Google Scholar 

  7. Ba, Y., Chen, R., Wang, Y., Yan, L., Shi, B., Kadambi, A.: Physics-based neural networks for shape from polarization. arXiv preprint arXiv:1903.10210 (2019)

  8. Baek, S.H., Jeon, D.S., Tong, X., Kim, M.H.: Simultaneous acquisition of polarimetric svbrdf and normals. ACM Trans. Graph. 37(6), 1–4 (2018)

    Article  Google Scholar 

  9. Bagher, M.M., Soler, C., Holzschuch, N.: Accurate fitting of measured reflectances using a shifted gamma micro-facet distribution. In: Computer Graphics Forum, vol. 31, pp. 1509–1518. Wiley Online Library (2012)

    Google Scholar 

  10. Blender: Suzanne. https://www.blender.org/. Accessed 15 Nov 2019

  11. Chen, L., Zheng, Y., Subpa-Asa, A., Sato, I.: Polarimetric three-view geometry. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36 (2018)

    Google Scholar 

  12. Collett, E.: Field Guide to Polarization. Field Guide Series, SPIE Press (2005), https://books.google.co.jp/books?id=5lJwcCsLbLsC

  13. Cui, Z., Gu, J., Shi, B., Tan, P., Kautz, J.: Polarimetric multi-view stereo. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1558–1567 (2017)

    Google Scholar 

  14. Cui, Z., Larsson, V., Pollefeys, M.: Polarimetric relative pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2671–2680 (2019)

    Google Scholar 

  15. Hyde Iv, M., Schmidt, J., Havrilla, M.: A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces. Opt. Exp. 17(24), 22138–22153 (2009)

    Article  Google Scholar 

  16. Kadambi, A., Taamazyan, V., Shi, B., Raskar, R.: Polarized 3D: high-quality depth sensing with polarization cues. In: IEEE International Conference on Computer Vision, pp. 3370–3378 (2015)

    Google Scholar 

  17. Logothetis, F., Mecca, R., Sgallari, F., Cipolla, R.: A differential approach to shape from polarisation: a level-set characterisation. Int. J. Comput. Vis. 127(11–12), 1680–1693 (2019)

    Article  Google Scholar 

  18. Mahmoud, A.H., El-Melegy, M.T., Farag, A.A.: Direct method for shape recovery from polarization and shading. In: IEEE International Conference on Image Processing, pp. 1769–1772. IEEE (2012)

    Google Scholar 

  19. Miyazaki, D., Kagesawa, M., Ikeuchi, K.: Transparent surface modeling from a pair of polarization images. IEEE Trans. Pattern Anal. Mach. Intell. 1, 73–82 (2004)

    Article  Google Scholar 

  20. Miyazaki, D., Tan, R.T., Hara, K., Ikeuchi, K.: Polarization-based inverse rendering from a single view. In: IEEE International Conference on Computer Vision, p. 982. IEEE (2003)

    Google Scholar 

  21. Nayar, S.K., Fang, X.S., Boult, T.: Separation of reflection components using color and polarization. Int. J. Comput. Vis. 21(3), 163–186 (1997)

    Article  Google Scholar 

  22. Ngo Thanh, T., Nagahara, H., Taniguchi, R.I.: Shape and light directions from shading and polarization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2310–2318 (2015)

    Google Scholar 

  23. Priest, R.G., Meier, S.R.: Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces. Opt. Eng. 41, 988–993 (2002)

    Article  Google Scholar 

  24. Rahmann, S., Canterakis, N.: Reconstruction of specular surfaces using polarization imaging. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-I. IEEE (2001)

    Google Scholar 

  25. Renhorn, I.G., Boreman, G.D.: Developing a generalized BRDF model from experimental data. Opt. Exp. 26(13), 17099–17114 (2018)

    Article  Google Scholar 

  26. Renhorn, I.G., Hallberg, T., Bergström, D., Boreman, G.D.: Four-parameter model for polarization-resolved rough-surface BRDF. Opt. Exp. 19(2), 1027–1036 (2011)

    Article  Google Scholar 

  27. Renhorn, I.G., Hallberg, T., Boreman, G.D.: Efficient polarimetric BRDF model. Opt. Exp. 23(24), 31253–31273 (2015)

    Article  Google Scholar 

  28. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 325–332 (2001)

    Google Scholar 

  29. Smith, W.A., Ramamoorthi, R., Tozza, S.: Height-from-polarisation with unknown lighting or albedo. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2875–2888 (2018)

    Article  Google Scholar 

  30. Taamazyan, V., Kadambi, A., Raskar, R.: Shape from mixed polarization. arXiv preprint arXiv:1605.02066 (2016)

  31. Thilak, V., Voelz, D.G., Creusere, C.D.: Polarization-based index of refraction and reflection angle estimation for remote sensing applications. Appl. Opt. 46(30), 7527–7536 (2007)

    Article  Google Scholar 

  32. Turk, G., Levoy, M.: The stanford bunny. http://graphics.stanford.edu/data/3Dscanrep/. Accessed 15 Nov 2019

  33. Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refraction through rough surfaces. In: Eurographics conference on Rendering Techniques, pp. 195–206. Eurographics Association (2007)

    Google Scholar 

  34. Wang, K., Zhu, J.P., Liu, H.: Degree of polarization based on the three-component PBRDF model for metallic materials. Chin. Phys. B 26(2), 024210 (2017)

    Article  Google Scholar 

  35. Wolff, L.B.: Polarization-based material classification from specular reflection. IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990)

    Article  Google Scholar 

  36. Wolff, L.B., Boult, T.E.: Constraining object features using a polarization reflectance model. IEEE Trans. Pattern Anal. Mach. Intell. 7, 635–657 (1991)

    Article  Google Scholar 

  37. Yamazaki, T., et al.: Four-directional pixel-wise polarization CMOS image sensor using air-gap wire grid on 2.5-\(\mu \)m back-illuminated pixels. In: IEEE International Electron Devices Meeting, pp. 8–17. IEEE (2016)

    Google Scholar 

  38. Yang, L., Tan, F., Li, A., Cui, Z., Furukawa, Y., Tan, P.: Polarimetric dense monocular slam. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3857–3866 (2018)

    Google Scholar 

  39. Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5287–5295 (2017)

    Google Scholar 

  40. Zhang, Y., Zhang, Y., Zhao, H., Wang, Z.: Improved atmospheric effects elimination method for PBRDF models of painted surfaces. Opt. Exp. 25(14), 16458–16475 (2017)

    Article  Google Scholar 

  41. Zhu, D., Smith, W.A.: Depth from a polarisation + rgb stereo pair. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

Download references

Acknowledgment

We express our sincere thanks to our colleagues from Sony Corporation for their helpful discussion and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhi Kondo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1885 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kondo, Y., Ono, T., Sun, L., Hirasawa, Y., Murayama, J. (2020). Accurate Polarimetric BRDF for Real Polarization Scene Rendering. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58529-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58528-0

  • Online ISBN: 978-3-030-58529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics