Abstract
Rectified linear units (ReLU) are commonly used in deep neural networks. So far ReLU and its generalizations (non-parametric or parametric) are static, performing identically for all input samples. In this paper, we propose Dynamic ReLU (DY-ReLU), a dynamic rectifier of which parameters are generated by a hyper function over all input elements. The key insight is that DY-ReLU encodes the global context into the hyper function, and adapts the piecewise linear activation function accordingly. Compared to its static counterpart, DY-ReLU has negligible extra computational cost, but significantly more representation capability, especially for light-weight neural networks. By simply using DY-ReLU for MobileNetV2, the top-1 accuracy on ImageNet classification is boosted from 72.0% to 76.2% with only 5% additional FLOPs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, H., Gan, C., Han, S.: Once for all: train one network and specialize it for efficient deployment. arXiv:abs/1908.09791 (2019)
Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HylVB3AqYm
Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. arXiv:abs/1912.03458 (2019)
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUS). arXiv preprint arXiv:1511.07289 (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., Garcia, R.: Incorporating second-order functional knowledge for better option pricing. In: Advances in Neural Information Processing Systems, pp. 472–478 (2001)
Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. arXiv preprint arXiv:1302.4389 (2013)
Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: ICLR (2017)
Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947–951 (2000)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Howard, A., et al.: Searching for MobileNetv3. CoRR abs/1905.02244 (2019). http://arxiv.org/abs/1905.02244
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.: Multi-scale dense networks for resource efficient image classification. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk2aImxAb
Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: alexnet-level accuracy with 50\(\times \) fewer parameters and \(<\)1 mb model size. CoRR abs/1602.07360 (2016). http://arxiv.org/abs/1602.07360
Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: The IEEE International Conference on Computer Vision (ICCV) (2009)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, pp. 971–980 (2017)
Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural Information Processing Systems, pp. 2181–2191 (2017). http://papers.nips.cc/paper/6813-runtime-neural-pruning.pdf
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=S1eYHoC5FX
Liu, L., Deng, J.: Dynamic deep neural networks: optimizing accuracy-efficiency trade-offs by selective execution. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)
Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: in ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)
Misra, D.: Mish: a self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681 (2019)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)
Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Trottier, L., Gigu, P., Chaib-draa, B., et al.: Parametric exponential linear unit for deep convolutional neural networks. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 207–214. IEEE (2017)
Wang, X., Yu, F., Dou, Z.-Y., Darrell, T., Gonzalez, J.E.: SkipNet: learning dynamic routing in convolutional networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 420–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_25
Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Wu, B., et al.: Shift: a zero flop, zero parameter alternative to spatial convolutions (2017)
Wu, Z., et al.: BlockDrop: dynamic inference paths in residual networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29
Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=rylqooRqK7
Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. CoRR (2015)
Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: NeurIPS (2019)
Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=H1gMCsAqY7
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb
Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. CoRR abs/1611.01578 (2017)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z. (2020). Dynamic ReLU. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-58529-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58528-0
Online ISBN: 978-3-030-58529-7
eBook Packages: Computer ScienceComputer Science (R0)