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Abstract. Photometric loss is widely used for self-supervised depth and egomo-
tion estimation. However, the loss landscapes induced by photometric differences
are often problematic for optimization, caused by plateau landscapes for pixels
in textureless regions or multiple local minima for less discriminative pixels. In
this work, feature-metric loss is proposed and defined on feature representation,
where the feature representation is also learned in a self-supervised manner and
regularized by both first-order and second-order derivatives to constrain the loss
landscapes to form proper convergence basins. Comprehensive experiments and
detailed analysis via visualization demonstrate the effectiveness of the proposed
feature-metric loss. In particular, our method improves state-of-the-art methods
on KITTI from 0.885 to 0.925 measured by ¢ for depth estimation, and signifi-
cantly outperforms previous method for visual odometry.

1 Introduction

Estimating depth and egomotion from monocular camera is a fundamental and valuable
task in computer vision, which has wide applications in augmented reality [35], robotics
navigation [8]] and autonomous driving [31]. Though monocular camera is cheap and
lightweight, the task is hard for conventional STM/SLAM algorithms [12/34/42] and
continues challenging deep learning based approaches [4,24/112156]].

Deep learning for depth and egomotion estimation can be broadly categorized into
supervised and self-supervised learning. For depth estimation, supervised learning takes
images paired with depth maps as input [[11113123]], where depth maps are sparsely col-
lected from expensive LiDAR sensors [14] or densely rendered from simulation en-
gines [29]], while supervision from LiDAR limits the generalization to new cameras
and supervision from rendering limits the generalization to real scenes. For egomo-
tion estimation, supervised signals come from trajectories computed by classical meth-
ods with high precision sensors like IMU and GPS, which are also costly and cannot
guarantee absolute accuracy. Self-supervised learning unifies these two tasks into one
framework, and only uses monocular videos as inputs, and supervision is from view
synthesis [5652(2716[15]]. The setup is simpler, and easy to generalize among cam-
eras.

* This work is done when Chang Shu is an intern at DeepMotion.
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However, self-supervised approaches are still inferior to supervised ones by large
margins when compared on standard benchmarks. The main problem lies in the weak
supervision added as photometric loss, which is defined as the photometric difference
between a pixel warped from source view by estimated depth and pose and the pixel
captured in the target view. Nevertheless, small photometric loss does not necessar-
ily guarantee accurate depth and pose, especially for pixels in textureless regions. The
problem can be partially solved by adding smoothness loss on depth map, which en-
courages first-order smoothness [4/16/15] or second-order smoothness [50/51/49/26],
and forces depth propagation from discriminative regions to textureless regions. How-
ever, such propagation is with limited range and tends to cause over-smooth results
around boundaries.

Considering the basic limitation is from representation, feature-metric loss is pro-
posed to use learned feature representation for each pixel, which is explicitly con-
strained to be discriminative even in textureless regions. For learning feature repre-
sentation, a single view reconstruction pathway is added as an auto-encoder network.
To ensure loss landscapes defined on the learned feature representation having desired
shapes, two additional regularizing losses are added to the auto-encoder loss, i.e., dis-
criminative loss and convergent loss. The discriminative loss encourages feature differ-
ences across pixels modeled by first-order gradients, while the convergent loss ensures
a wide convergence basin by penalizing feature gradients’ variances across pixels.

In total, our network architecture contains three sub-networks, i.e., DepthNet and
PoseNet for cross-view reconstruction, and FeatureNet for single-view reconstruction,
where features generated by FeatureNet are used to define feature-metric loss for Depth-
Net and PoseNet.

In experiment, feature-metric loss outperforms widely used first-order and second-
order smoothness losses, and improves state-of-the-art depth estimation from 0.885 to
0.925 measured by 6; on KITTI dataset. In addition, our method generates better ego-
motion estimation and results in more accurate visual odometry.

In general, our contributions are summarized as three-fold:

— Feature-metric loss is proposed for self-supervised depth and egomotion estima-
tion.

— FeatureNet is proposed for feature representation learning for depth and egomotion
estimation.

— State-of-the-art performances on depth and egomotion estimation are achieved on
KITTI dataset.

2 Related Work

In this section, we review related works of self-supervised learning for two tasks, i.e.,
monocular depth and egomotion estimation, as well as visual representation learning.

Monocular depth and egomotion estimation: SfMLearner is a pioneering work [56]
for this task, where geometry estimation from DepthNet and PoseNet is supervised by
photometric loss. To tackle moving objects that break the assumption of static scenes,
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optical flow is estimated to compensate these moving pixels [52149126l57]], segmenta-
tion masks provided by pre-trained segmentation models are also to handle potential
moving objects separately [4/30117].

More geometric priors are also used to strengthen the self-supervised learning.
Depth-normal consistency loss is proposed as as extra constraint [SO.51]. 3D consis-
tency between point clouds backprojected from adjacent views is considered in [271512].
In addition, binocular videos are used for training to solve both scale ambiguity and
scene dynamics [24/15/49/26], where only inference can be carried on monocular video.

In contrast to all above methods where focuses are on the geometry parts of the

task, deep feature reconstruction [S3] proposed to use deep features from pre-trained
models to define reconstruction loss. Our method shares the same spirit, but takes a
step further to explicitly learn deep features from the geometry problem under the same
self-supervised learning framework.
Visual representation learning: It is of great interest of self-supervised visual repre-
sentation learning for downstream tasks. Without explicitly provided labels, the losses
are defined by manipulating the data itself in different ways, which could be recon-
structing input data [28l45010i32]], predicting spatial transformations [9.36437U38]], col-
oring grayscale input images [712112254]] etc. Our work belongs to reconstruct the in-
put through an auto-encoder network. Different from previous works mainly aiming
for learning better features for recognition tasks, our method is designed to learn better
features for the geometry task.

3 Method

In this section, we firstly introduce geometry models with required notations, then de-
fine two reconstruction losses, one for depth and ego-motion learning, the other for
feature representation learning. Finally, we present our overall pipeline and implemen-
tation details about loss settings and network architectures.

3.1 Geometry models

Camera model and depth. The camera operator 7 : R® — R? projects a 3D point
P =(X,Y,Z)toa?2D pixel p = (u,v) by:

X Y
W(P):(fngrcmafszrCy) (D

where (fz, fy, Cz, ¢y) are the camera intrinsic parameters. Similarly, a pixel p is pro-
jected to a 3D point P given its depth D(p), i.e., backprojection 7=1 : R? x R — R3:

(D) = D) (L) @

Ego-motion. Ego-motion is modeled by transformation G € SE(3), together with
7 and 71, we can define a projective warping function w : R? x R x SE(3) — R?,
which maps a pixel p in one frame to the other frame transformed by G:

p=w(p.D(p).G) = (G 7 (p.D())) )



4 C. Shu, K. Yu, Z. Duan and K. Yang

3.2 Cross-view reconstruction

With the above geometry models, target frame I; can be reconstructed from source
frame I via,

Iisi(p) = 1,(P) (4)

where p is defined in Eq. [3|and depends on both depth and ego-motion. I;(p) and I5(p)
should be similar given a set of assumptions, including both depth and ego-motion are
correct; the corresponding 3D point is static with Lambertian reflectance and not oc-
cluded in both views. Then, a multi-view reconstruction loss can be defined for learning
depth and motion, i.e.,

Lose =Y UL(D),1:(p)), )

p

where £(, ) is the per-pixel loss which measures the photometric difference, i.e, photo-
metric loss.

Though the loss works, it is fundamentally problematic since correct depth and pose
is sufficient but not necessary for small photometric error, e.g., pixels in a textureless
with the same photometric values can have small photometric losses even the depth
and pose are wrongly estimated. The problem can be formally analysed from the op-
timization perspective by deriving the gradients with respect to both depth D(p) and
egomotion G,

L, OUL(G). L) OL(B) 9

— ,\ . , 6
9D() L) 9% D) ©
Lot~ 00L(P), Ii(p)) OL(p) Op
06 —X oL@ o5 9G @

where both gradients depend on the image gradient 815—?. For textureless region, the
image gradients are close to zero which further causes zero gradients for Eq. [|and con-
tributes zero to Eq. [7| for egomotion estimation. In addition, locally non-smooth gra-
dient directions are also challenging convergence due to inconsistent update directions
towards minima.

Therefore, we propose to learn feature representation ¢¢(p) with better gradient
(Mgig) to overcome the above problems, and generalizes photometric loss to feature-

metric loss accordingly,

Losi =Y L¢s(P); 0e(p))- ®)

3.3 Single-view reconstruction

The feature representation ¢(p) is also learned in self-supervised manner with single-
view reconstruction through an auto-encoder network. The auto-encoder network con-
tains an encoder for deep feature extractions from an image and an decoder to recon-
struct the input image based on the deep features. The deep features are learned to
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encode large patterns in an image where redundancies and noises are removed. To en-
sure the learned representation with good properties for optimizing Eq. [8] we add two
extra regularizers Lg;s and L., to the image reconstruction loss L., i.e.,

Es = Lrec + O[Ldis + Bﬁcvt (9)

where o and [ are set to 1e-3 via cross validation. These three loss terms are described
in detail below.

For simplicity, we denote first-order derivative and second-order derivative with
respect to image coordinates by V! and V2, which equals 0, + 9, and 0,5, + 20,y + Oy
respectively.

Image reconstruction loss Image reconstruction loss L. is the standard loss func-
tion for an auto-encoder network, which requires the encoded features can be used to
reconstruct its input, i.e.,

ﬁrec = Z |I(p) - Irec(p)h (10)
p

where I(p) is the input image, and I,...(p) is the image reconstructed from the auto-
encoder network.
Discriminative loss L, is defined to ensure the learned features have gradients

8%—%@ by explicitly encouraging large gradient, i.e.,
Lais = —Z|V1¢(P)‘1 (1)
P
Furthermore, image gradients are used to emphasize low-texture regions,
Lais ==Y e IVIET1(p)), (12)
P

where low-texture regions receive large weights.

Convergent loss L.,; is defined to encourage smoothness of feature gradients,
which ensures consistent gradients during optimization and large convergence radii ac-
cordingly. The loss is defined to penalize the second-order gradients, i.e.,

L =Y [V?o(p)h (13)
p

3.4 Opverall pipeline

Single-view reconstruction and cross-view reconstruction are unified to form the final
framework as illustrated in Fig. [T} DepthNet is a monodepth estimator which takes the
target frame as input and outputs a depth map. PoseNet is an egomotion estimator,
which takes two frames from both source and target view and outputs the relative pose
between them. DepthNet and PoseNet provide the geometry information to establish
point-to-point correspondences for cross-view reconstruction. FeatureNet is for feature
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Fig. 1: An illustration of the overall framework, which contains DepthNet, PoseNet
and FeatureNet for depth map prediction, egomotion prediction and feature learning
respectively. FeatureNet uses L to learn require visual representation, the encoder from
FeatureNet is used to extract features for cross-view reconstruction loss L_.;.
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representation learning, which follows the auto-encoder architecture and supervised by
single-view reconstruction loss. Features from FeatureNet are used to define the cross-
view reconstruction loss.

Therefore, the total loss for the whole architecture contains two parts, where L
constrains the quality of learned features through single-view reconstruction, whilst
L+ penalizes the discrepancy from cross-view reconstruction, i.e.,

Ltotul = ﬂs + Es%t (]4)

Toward better performance, the proposed feature-metric loss is combined with used
photometric loss, i.e.,

L= Z Efm (¢s (1/7\)7 (bt(p))

(15)
+ 3 Lon(1(D), L(p))

where Ly, and L, are the feature-metric loss and photometric loss respectively.
Specifically, feature-metric loss is defined by

Lim = [6s(D) — ¢e(p)]1, (16)

and photometric loss is defined following [16] using a combination of L; and SSIM
losses, i.e.,
Lon =015 |1(p) — L(p)h+
b . (17)
— SSIM(Z(p), 1+ (p))
2

Furthermore, we resolve the occlusion problem following the practices in [15/46/6/53]],

where two source views are used to define the cross-view reconstruction loss,

Loy =Y min Lo (6,(5), &4(p) (18)
P

1
0.85
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Fig. 2: Qualitative comparison between Monodepth2 [13] (second row) and our method
(last row). It can be seen that we achieve better performance on the low-texture regions
like walls and billboards, and finer details are present like silhouette of humans and
poles.

Where V is a set composed of source frames. When trained on the monocular videos, V'
contains the previous and posterior source frames of current target frame; when trained
on the calibrated binocular videos, an extra frame of opposite stereo pair is added.

3.5 Implementation details

For FeatureNet, ResNet-50 with fully-connected layer removed is used as the en-
coder, where deepest feature map goes through 5 downsampling stages and reduces to
1/32 resolution of input image, the decoder contains five 3 x 3 convolutional layers
and each followed by a bilinear upsampling layer. Multi-scale feature maps from con-
volutional layers of the decoder are used to generate multi-scale reconstructed images,
where feature map of each scale further goes through a 3 x 3 convolution with sig-
moid function for image reconstruction. The largest feature map with 64 channels from
encoder is regularized by L4;s and L.,; and will be used for feature-metric loss.

DepthNet also adopts an encoder-decoder structure, where ResNet-50 without fully-
connected layer is used as encoder and multi-scale feature maps are outputted. The
decoder for depth is implemented in a cascaded refinement manner, which decodes
depth maps in a top-down pathway. Specifically, multiple-scale features from encoder
are used to predict maps of corresponding sizes via a 3 x 3 convolution followed by
sigmoid, and these maps are refined in a coarse-to-fine manner towards the final depth
map. Both FeatureNet and DepthNet take image size of 320 x 1024 as inputs.

The PoseNet is a pose estimator with a structure of ResNet-18 [[18], which is modi-
fied to receive a concatenated image pair and predicts a relative pose therein. Here axis
angle is chosen to represent the 3D rotation. The input resolution is 192 x 640. Compar-
ing with both FeatureNet and DepthNet, PoseNet uses lower image resolution and more
light-weight backbone, which observes this has no obvious influence to pose accuracy,
but significantly save both memory and computation.

We adopt the setting in for data preprocessing. Our models are implemented on
PyTorch [39] with distributed computing, and trained for 40 epochs using Adam [20]]
optimizer, with a batch size of 2, on the 8 GTX 1080Ti GPUs. The learning rate is
gradually warmed up to 1le~* in 3 steps, where each step increases learning rate by
le=*/3 in 500 iterations. After warmping, learning rate le~* is used for the first 20
epochs and halved twices at 20th and 30th epoch. As for online refinement technique
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Abs Rel : 4>, [d* — d|/d* RMSE : \/ﬁ S ep |ld* — d||?

SqRel : 5 3 [|d” — d||?/d* RMSE log : \/ﬁ e |llogd* — logd)|?

8 : il{d € Dl max(%, &) <1.25'}| x 100%
Table 1: Performance metrics for depth evaluation. d and d* respectively denotes pre-
dicted and ground truth depth, D presents a set of all the predicted depth values of an

image, |.| returns the number of the elements in the input set.

we used during testing, we follow the practice proposed by [5l4]. We keep the model
training while performing inference. The batch size is set to 1. Each batch consists of the
test image and its two adjacent frames. Online refinement is performed for 20 iterations
on one test sample with the same setting introduced before. No data augmentation is
used in the inference phase.

4 Experiments

In this section we show extensive experiments for evaluating the performance of our
approach. We make a fair comparison on KITTI 2015 dataset [14] with prior art on
both single view depth and visual odometry estimation tasks. And detailed ablation
studies of our approach are done to show the effectiveness of the feature-metric loss.

KITTI 2015 dataset contains videos in 200 street scenes captured by RGB cameras,
with sparse depth ground truths captured by Velodyne laser scanner. We follow [56]]
to remove static frames as pre-processing step. We use the Eigen split of [L1]] to di-
vide KITTI raw data, and resulting in 39,810 monocular triplets for training, 4,424 for
validation and 697 for testing.

For depth evaluation, we test our depth model on divided 697 KITTI testing data.
For odometry evaluation, we test our system to the official KITTI odometry split which
containing 11 driving sequences with ground truth odometry obtained through the IMU
and GPS readings. Following previous works [53l2l56[], we train our model on the se-
quence 00-08 and use the sequence 09-10 for testing.

4.1 Depth evaluation.

Performance metrics. Standard metrics are used for depth evaluation, as shown in
Tab. |1} During evaluation, depth is capped to 80m. For the methods trained on monoc-
ular videos, the depth is defined up to scale factor [56], which is computed by

scale = median(Dg;)/median(Dpreq) (19)

For evaluation, those predicted depth maps are multiplied by computed scale to match
the median with the ground truth, this step is called median scaling.

Comparison with state-of-the-art. Tab. |2[ shows performances of current state-of-
the-art approaches for monocular depth estimation. They are trained on different kinds
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Method The lower the better The higher the better
Abs Rel Sq Rel RMSE RMSE log| 4§, 0o 03
StMLearner [56] 0.208 1.768 6.958 0.283 ]0.678 0.885 0.957
DNC [51] 0.182 1.481 6.501 0.267 |0.7250.906 0.963
Vid2Depth [27] 0.163 1.240 6.220 0.250 |0.7620.916 0.968
LEGO [50] 0.162 1.352 6.276 0.252 ]0.783 0.921 0.969
GeoNet [52] 0.155 1.296 5.857 0.233 |0.7930.931 0.973
DF-Net [57] 0.150 1.124 5.507 0.223 |0.806 0.933 0.973
DDVO [46] 0.151 1.257 5583 0.228 ]0.8100.936 0.974
EPC++ [26] 0.141 1.029 5350 0.216 |[0.8160.941 0.976

Struct2Depth [4]
SIGNet [30]

CC [43]

LearnK [17]
DualNet [55]
SuperDepth [40]
Monodepth2 [15]

0.141 1.036 5291 0.215 (0.8160.945 0.979
0.133 0905 5.181 0.208 ]0.8250.947 0.981
0.140 1.070 5.326 0.217 |0.826 0.941 0.975
0.128 0.959 5230 0.212 ]0.8450.947 0.976
0.121 0.837 4945 0.197 ]0.8530.955 0.982
0.116 1.055 - 0.209 |0.8530.948 0.977
0.115 0.882 4.701  0.190 ]0.879 0.961 0.982

SEEEEEEEEEEEEERE ¢
£

Ours 0.104 0.729 4.481 0.179 (0.893 0.965 0.984
Struct2Depth [4] M* | 0.109 0.825 4.750 0.187 ]0.874 0.958 0.983
GLNet [3] M* | 0.099 0.796 4.743 0.186 ]0.884 0.955 0.979
Ours M* | 0.088 0.712 4.137 0.169 |0.915 0.965 0.982
Dorn [13] Sup | 0.099 0.593 3.714 0.161 |0.897 0.966 0.986
BTS [23] Sup | 0.091 0.555 4.033 0.174 |0.904 0.967 0.984

MonoDepth [16] S 0.133 1.142 5533 0.230 |0.830 0.936 0.970
MonoDispNet [48] 0.126 0.832 4.172 0.217 ]0.840 0.941 0.973
MonoResMatch [44] 0.111 0.867 4.714 0.199 ]0.864 0.954 0.979
MonoDepth?2 [15] 0.107 0.849 4764 0.201 |0.874 0.953 0.977
RefineDistill [41] 0.098 0.831 4.656 0.202 |0.8820.948 0.973
UnDeepVO [24] MS | 0.183 1.730 6.570  0.268 - - -
DFR [53] MS | 0.135 1.132 5585 0.229 ]0.8200.933 0.971
EPC++ [26] MS | 0.128 0.935 5.011 0.209 |0.8310.945 0.979
MonoDepth2 [15] |[MS | 0.106 0.818 4.750 0.196 |0.874 0.957 0.979
DepthHint [47] MS | 0.100 0.728 4469 0.185 |0.8850.962 0.982
Ours MS | 0.099 0.697 4.427 0.184 |0.889 0.963 0.982
Ours [MS*] 0.079 0.666 3922 0.163 [0.9250.970 0.984
Table 2: Comparison of performances are reported on the KITTI dataset. Best results
are in bold, second best are underlined. M: trained on monocular videos. S: trained
on stereo pairs. MS: trained on calibrated binocular videos. Sup: trained on labelled
single images. *: using the online refinement technique [4], which advocated keeping
the model training while performing inference. {: using post processing steps.

S
S
S
S

of data — monocular videos (M), stereo pairs (S), binocular videos (MS) and labelled
single images (Sup), while all of them are tested with single image as input.

We achieve the best performance compared to all self-supervised methods, no mat-
ter which training data is used. Our method achieves more significant improvement in
the performance metric Sq Rel. According to Tab.|l} this metric penalizes more on large
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Method Seq. 09 Seq. 10
terr TGT‘T‘ terr TET‘T

ORB-SLAM [33] {15.300.26] 3.68 0.48
StMLearner [56] [17.84 6.78(37.91 17.78
DFR [53] 11.93 3.91|12.45 3.46
MonoDepth2 [15] {10.85 2.86/11.60 5.72
NeuralBundler [25]| 8.10 2.81{12.90 3.17
SC-SfMlearner [2] | 8.24 2.19/10.70 4.58
Ours 8.75 2.11|10.67 4.91

Table 3: Comparison of performances are reported on the KITTI odometry dataset [[14].

Best results are in bold.

errors in short range, where more textureless regions exist due near objects are large in
images and our method handles well. The closest results in self-supervised methods are
from DepthHint [47], which uses the same input size but adds an extra post process-
ing step. It utilizes a traditional stereo matching method — SGM [19] to provide extra
supervisory signals for training, since SGM is less likely to be trapped by local mini-
mums. However, in its settings, the object function of SGM is still photometric loss, the
drawbacks of photometric loss are still inevitable. In contrast, proposed feature-metric
loss will largely avoid the interference of local minimums.

Moreover, compared with state-of-the-art supervised methods [[13123], which achieve
top performances on the KITTI depth prediction competition, our model with online
refinement technique even exceeds in many metrics. Our advantage over supervised
methods is that the gap between the distributions of training and testing data does ex-
ist, we can make full use of online refinement technique. What is more, as shown in
Sec.[.3] the introduction of feature-metric loss can obtain more performance gain from
online refinement technique.

Fig. ] shows the qualitative results. Compared with state-of-the-art method Mon-
oDepth2 [[15], we achieve better performance on low-texture regions and finer details,
e.g., walls, billboards, silhouette of humans and poles.

However, MonoDepth?2 is built on the photometric loss, which is easily trapped by
local minimums especially on low-texture regions like walls and billboards. In contrast,
the introduction of feature-metric loss leads the network into jumping out of local min-
imums, since our features are designed to form a desirable loss for easier optimization.

4.2 Odometry evaluation

Performance metric. Average translational root mean square error drift (¢.,.-) and aver-
age rotational root mean square error drift (7.,-) on length of 100m - 800m are adopted
for evaluation. For the methods who suffer from scale ambiguity, one global scale that
best align the whole sequence is used.

Comparison with state-of-the-art. As shown in Tab.[3] we report the performance
of ORB-SLAM|[33] as a reference and compare with recent deep methods. our method
gets top performances in two metrics and comparable performance in the rest metrics
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The lower the better The higher the better

Method OR| Abs Rel Sq Rel RMSE RMSE log| &1 6 0

Lon + L1, x [ 0.105 0.748 4.835 0.191 [0.8780.956 0.979
Lo+ L2, x | 0.103 0740 4754  0.187 [0.8810.959 0.981
Lon+ LY, + L3, x| 0103 0735 4554 0.187 [0.8830.961 0.981
Lon+ L +£3.| v | 0088 0712 4237 0.175 [0.9050.965 0.982
Lon+ Lim X [ 0.099 0.697 4427 0.184 [0.8890.963 0.982
Lon + Lm v | 0079 0.666 3.922 0.163 [0.9250.970 0.984

(a) Different loss combinations in £,_,; (Eq. , the term ’OR’ denotes whether the
online refinement [4] is used.

Loss The lower the better The higher the better| Seq. 09 | Seq. 10

Abs Rel Sq Rel RMSE RMSE log| d; Oa 03 |terr Terr|terr Terr
Lorec 0.105 0.739 4.585 0.191 [0.8830.961 0.982 [4.30 1.18(8.50 4.06
Lyrec + Lais 0.103 0.723 4.535 0.187 |0.8840.961 0.982 |4.10 1.07|8.03 3.94
Lrec+ Levt 0.100 0.721 4.474 0.187 (0.8850.962 0.982 |3.29 1.16|5.91 3.48

Lice + Lais + Leype| 0.099  0.697 4.427 0.184 [0.889 0.963 0.982 [3.07 0.89(3.83 1.78
(b) Different loss combinations in £ (Eq. EI)

Table 4: The ablation study of different loss settings of our work.

compared to other deep learning methods. When compared to traditional SLAM method
[33]], our translation performance is comparable, while in the rotation estimation we
still fall short like other deep learning methods. We believe that it is because the bundle
adjustment of the traditional SLAM method can optimize subtler rotation errors along
a long sequence which can’t be observed in a small sequence used by current deep
learning based methods. Moreover current reconstruction process may be not sensible
to variation of rotation [3].

4.3 Ablation study

To get a better understanding of the contribution of proposed losses—feature-metric
loss, discriminative loss and convergent loss—to the overall performance, we perform
an ablation study in Tab. ]

The losses for cross-view reconstruction. In Tab. E}a, different components of
Ls_; have been tried. The smoothness losses which are widely used are used as base-
lines: ) N

fis — ZG*WU(P)h‘viD(p)h (20)

p

where D(p) = D(p)/ D, this operation is the mean normalization technique advocated
by [46]. ¢ denotes the order of the derivatives. These smoothness losses are used as
baselines to verify the effectiveness of the feature-metric loss.

Compared with smoothness losses, feature-metric loss leads to much better effect.
We can see that a biggest performance boost is gained by introducing the feature-metric
loss. As we discussed before, the propagation range of smoothness losses is limited, in
contrast, the feature-metric loss enable a long-range propagation, since it has a large
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Fig. 3: A visualization of a learned visual representation, which is achieved by selecting
one principle channel through PCA decomposition, then showing the feature map as
a heat map, hotter color indicates a higher feature value. First row shows a typical
image which is full of textureless regions like walls and shadows. The visualization of
corresponding feature maps is shown in second to fourth rows. The feature maps are
respectively learned with different loss combinations, which sequentially correspond
with the settings in the first three rows in Tab.[dp. In order to get a better understanding,
we crop three typical textureless regions as shown in (a-c), cropped feature maps are
visualized according to the dynamic range after cropping.

convergence radius. We also observe that when feature-metric loss can benefit more
from the performance gain provided by online refinement than other loss combination.
Higher performance gain is attributed to better supervised signal provided by feature-
metric loss during online refinement phase, where incorrect depth values can be appro-
priately penalized with larger losses based on more discriminative features.
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The losses for single-view reconstruction. Tabdp shows that the model without
any of our contributions performs the worst. When combined together, all our compo-
nents lead to a significant improvement.

And as shown in right part of Tab. @, although small deviations are less obvious in
some metrics of the depth evaluation, small errors will be magnified via accumulation
and propagation during trajectory prediction, big differences are shown in the odometry
evaluation. Note that different from previous odometry evaluation, we directly applied
the model trained on the kitti raw data to sequence 09-10 to get t¢,. and rep..

Merely using L. gets similar performance as merely using photometric loss (the
third row in Tab. i), since it plays a similar role as the photometric loss at textureless
regions. Results get better when equipped with £, since discrimination at low-texture
regions is improved. Best performance is achieved when added L., which means dis-
crimination is not enough, a correct optimization direction is also important.

Visualization analysis. In order to see whether learned visual representations have
promised properties, we visualize it in Fig. 3] The feature maps learned with different
loss combinations: L;cc, Lrect+Lais and L+ Lais+ Lyt are sequentially shown from
the second to the fourth row. Although we require our feature to be discriminative, this
effect is not sufficient to be shown in a large view, since the gap between the features
of different sorts are much larger than that of spatially adjacent features. Therefore,
we cropped three typical textureless regions, and visualize them again according to the
dynamic range after cropping.

We can see that merely using L. get small variations at textureless regions. The
close-ups of original images are similar to feature maps only trained with £,..., which
verifies the proposed losses in improving feature representations. The feature map learned
with L. + L4;s is not smooth and disordered, since £4;s overemphasizes the discrep-
ancy between adjacent features, the network degenerates to form a landscape of a zigzag
shape. This phenomenon can be approved by the results in the second row of Tab. @b,
which is only slightly higher than merely using L, ...

A desired landscape for feature maps is a smooth slope, in this way, feature-metric
loss will be able to form a basin-like landscape. The feature map learned with all the
proposed losses approximates this ideal landscape, from zoom-in views we can see a
clear and smooth transition along a certain direction. On this landscape, gradient de-
scent approaches can move smoothly toward optimal solutions.

5 Conclusion

In this work, feature-metric loss is proposed for self-supervised learning of depth and
egomotion, where feature representation is additionally learned with two extra regular-
izers to ensure convergence towards correct depth and pose. The whole framework is
end-to-end trainable in self-supervised setting, and achieves state-of-the-art depth esti-
mation which is even comparable to supervised learning methods. Furthermore, visual
odometry based on estimated egomotion also significantly outperforms previous state-
of-the-art methods.
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