Skip to main content

Adversarial Semantic Data Augmentation for Human Pose Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Human pose estimation is the task of localizing body keypoints from still images. The state-of-the-art methods suffer from insufficient examples of challenging cases such as symmetric appearance, heavy occlusion and nearby person. To enlarge the amounts of challenging cases, previous methods augmented images by cropping and pasting image patches with weak semantics, which leads to unrealistic appearance and limited diversity. We instead propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity. Furthermore, we propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamically predict tailored pasting configuration. Given off-the-shelf pose estimation network as discriminator, the generator seeks the most confusing transformation to increase the loss of the discriminator while the discriminator takes the generated sample as input and learns from it. The whole pipeline is optimized in an adversarial manner. State-of-the-art results are achieved on challenging benchmarks. The code has been publicly available at https://github.com/Binyr/ASDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR, pp. 3686–3693 (2014)

    Google Scholar 

  2. Bulat, A., Tzimiropoulos, G.: Human pose estimation via convolutional part heatmap regression. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 717–732. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_44

    Chapter  Google Scholar 

  3. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: CVPR, pp. 7103–7112 (2018)

    Google Scholar 

  4. Chen, Y., Shen, C., Wei, X.S., Liu, L., Yang, J.: Adversarial posenet: a structure-aware convolutional network for human pose estimation. In: ICCV, pp. 1212–1221 (2017)

    Google Scholar 

  5. Chu, W., Hung, W.C., Tsai, Y.H., Cai, D., Yang, M.H.: Weakly-supervised caricature face parsing through domain adaptation. ICIP (2019)

    Google Scholar 

  6. Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A.L., Wang, X.: Multi-context attention for human pose estimation. In: CVPR, pp. 1831–1840 (2017)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  8. Fieraru, M., Khoreva, A., Pishchulin, L., Schiele, B.: Learning to refine human pose estimation. In: CVPR Workshops, pp. 205–214 (2018)

    Google Scholar 

  9. Gong, K., Liang, X., Zhang, D., Shen, X., Lin, L.: Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing. In: CVPR, pp. 932–940 (2017)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  11. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  12. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: BMVC, vol. 2, p. 5 (2010)

    Google Scholar 

  13. Ke, L., Chang, M.-C., Qi, H., Lyu, S.: Multi-scale structure-aware network for human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 731–746. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_44

    Chapter  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ICLR

    Google Scholar 

  15. Li, W., et al.: Rethinking on multi-stage networks for human pose estimation. arXiv preprint arXiv:1901.00148 (2019)

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Liu, T., et al.: Devil in the details: towards accurate single and multiple human parsing. arXiv preprint arXiv:1809.05996 (2018)

  18. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  19. Nie, X., Feng, J., Zuo, Y., Yan, S.: Human pose estimation with parsing induced learner. In: CVPR (2018)

    Google Scholar 

  20. Ning, G., Zhang, Z., He, Z.: Knowledge-guided deep fractal neural networks for human pose estimation. IEEE Trans. Multimed. 20(5), 1246–1259 (2018)

    Article  Google Scholar 

  21. Peng, X., Tang, Z., Yang, F., Feris, R.S., Metaxas, D.: Jointly optimize data augmentation and network training: Adversarial data augmentation in human pose estimation. In: CVPR (2018)

    Google Scholar 

  22. Su, Z., Ye, M., Zhang, G., Dai, L., Sheng, J.: Cascade feature aggregation for human pose estimation. arXiv preprint arXiv:1902.07837 (2019)

  23. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. arXiv preprint arXiv:1902.09212 (2019)

  24. Tang, W., Wu, Y.: Does learning specific features for related parts help human pose estimation? In: CVPR, pp. 1107–1116 (2019)

    Google Scholar 

  25. Tang, W., Yu, P., Wu, Y.: Deeply learned compositional models for human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 197–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_12

    Chapter  Google Scholar 

  26. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: NIPS, pp. 1799–1807 (2014)

    Google Scholar 

  27. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: CVPR, pp. 1653–1660 (2014)

    Google Scholar 

  28. Wang, X., Shrivastava, A., Gupta, A.: A-fast-RCNN: hard positive generation via adversary for object detection. In: CVPR, pp. 2606–2615 (2017)

    Google Scholar 

  29. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR. pp. 4724–4732 (2016)

    Google Scholar 

  30. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29

    Chapter  Google Scholar 

  31. Yang, W., Li, S., Ouyang, W., Li, H., Wang, X.: Learning feature pyramids for human pose estimation. In: ICCV, pp. 1281–1290 (2017)

    Google Scholar 

  32. Yu, A., Grauman, K.: Semantic jitter: dense supervision for visual comparisons via synthetic images. In: ICCV, pp. 5570–5579 (2017)

    Google Scholar 

  33. Zhang, H., et al.: Human pose estimation with spatial contextual information. arXiv preprint arXiv:1901.01760 (2019)

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under grant 61871435 and the Fundamental Research Funds for the Central Universities no. 2019kfyXKJC024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bin, Y. et al. (2020). Adversarial Semantic Data Augmentation for Human Pose Estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58529-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58528-0

  • Online ISBN: 978-3-030-58529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics