Skip to main content

Robust Tracking Against Adversarial Attacks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12364))

Included in the following conference series:

  • 4068 Accesses

Abstract

While deep convolutional neural networks (CNNs) are vulnerable to adversarial attacks, considerably few efforts have been paid to construct robust deep tracking algorithms against adversarial attacks. Current studies on adversarial attack and defense mainly reside in a single image. In this work, we first attempt to generate adversarial examples on top of video sequences to improve the tracking robustness against adversarial attacks. To this end, we take temporal motion into consideration when generating lightweight perturbations over the estimated tracking results frame-by-frame. On one hand, we add the temporal perturbations into the original video sequences as adversarial examples to greatly degrade the tracking performance. On the other hand, we sequentially estimate the perturbations from input sequences and learn to eliminate their effect for performance restoration. We apply the proposed adversarial attack and defense approaches to state-of-the-art deep tracking algorithms. Extensive evaluations on the benchmark datasets demonstrate that our defense method not only eliminates the large performance drops caused by adversarial attacks, but also achieves additional performance gains when deep trackers are not under adversarial attacks. The source code is available at https://github.com/joshuajss/RTAA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: ECCV Workshop (2016)

    Google Scholar 

  2. Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Learning discriminative model prediction for tracking. In: ICCV (2019)

    Google Scholar 

  3. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Atom: accurate tracking by overlap maximization. In: CVPR (2019)

    Google Scholar 

  4. Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: ECO: efficient convolution operators for tracking. In: CVPR (2017)

    Google Scholar 

  5. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29

    Chapter  Google Scholar 

  6. Dong, Y., et al.: Efficient decision-based black-box adversarial attacks on face recognition. In: CVPR (2019)

    Google Scholar 

  7. Eykholt, K., et al.: Robust physical-world attacks on deep learning models. In: CVPR (2018)

    Google Scholar 

  8. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  9. Guo, C., Rana, M., Cisse, M., Van Der Maaten, L.: Countering adversarial images using input transformations. In: ICLR (2018)

    Google Scholar 

  10. Han, B., Sim, J., Adam, H.: Branchout: regularization for online ensemble tracking with convolutional neural networks. In: CVPR (2017)

    Google Scholar 

  11. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45

    Chapter  Google Scholar 

  12. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with limited queries and information. arXiv preprint: 1804.08598 (2018)

    Google Scholar 

  13. Jung, I., Son, J., Baek, M., Han, B.: Real-time mdnet. In: ECCV (2018)

    Google Scholar 

  14. Kristan, M., et al.: The sixth visual object tracking vot2018 challenge results. In: ECCV Workshop (2018)

    Google Scholar 

  15. Kristan, M., et al.: The visual object tracking vot2016 challenge results. In: ECCV Workshop (2016)

    Google Scholar 

  16. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. In: ICLR (2017)

    Google Scholar 

  17. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: evolution of siamese visual tracking with very deep networks. In: CVPR (2019)

    Google Scholar 

  18. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: CVPR (2018)

    Google Scholar 

  19. Li, F., Tian, C., Zuo, W., Zhang, L., Yang, M.H.: Learning spatial-temporal regularized correlation filters for visual tracking. In: CVPR (2018)

    Google Scholar 

  20. Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: Defense against adversarial attacks using high-level representation guided denoiser. In: CVPR (2018)

    Google Scholar 

  21. Lu, X., Ma, C., Ni, B., Yang, X., Reid, I., Yang, M.H.: Deep regression tracking with shrinkage loss. In: ECCV (2018)

    Google Scholar 

  22. Lu, X., Wang, W., Ma, C., Shen, J., Shao, L., Porikli, F.: See more, know more: unsupervised video object segmentation with co-attention siamese networks. In: CVPR (2019)

    Google Scholar 

  23. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: ICCV (2015)

    Google Scholar 

  24. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: CVPR (2017)

    Google Scholar 

  25. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: CVPR (2016)

    Google Scholar 

  26. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  27. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR (2016)

    Google Scholar 

  28. Pu, S., Song, Y., Ma, C., Zhang, H., Yang, M.H.: Deep attentive tracking via reciprocative learning. In: NeurIPS (2018)

    Google Scholar 

  29. Qi, Y., et al.: Hedged deep tracking. In: CVPR (2016)

    Google Scholar 

  30. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. TPAMI (2016)

    Google Scholar 

  31. Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R.W., Yang, M.H.: CREST: convolutional residual learning for visual tracking. In: ICCV (2017)

    Google Scholar 

  32. Song, Y., et al.: VITAL: visual tracking via adversarial learning. In: CVPR (2018)

    Google Scholar 

  33. Sun, B., Tsai, N.H., Liu, F., Yu, R., Su, H.: Adversarial defense by stratified convolutional sparse coding. In: CVPR (2019)

    Google Scholar 

  34. Sun, Y., Sun, C., Wang, D., He, Y., Lu, H.: Roi pooled correlation filters for visual tracking. In: CVPR (2019)

    Google Scholar 

  35. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  36. Valmadre, J., Bertinetto, L., Henriques, J., Vedaldi, A., Torr, P.H.: End-to-end representation learning for correlation filter based tracking. In: CVPR (2017)

    Google Scholar 

  37. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: ICCV (2015)

    Google Scholar 

  38. Wang, N., Song, Y., Ma, C., Zhou, W., Liu, W., Li, H.: Unsupervised deep tracking. In: CVPR (2019)

    Google Scholar 

  39. Wang, N., Zhou, W., Song, Y., Ma, C., Liu, W., Li, H.: Unsupervised deep representation learning for real-time tracking. IJCV (2020). https://doi.org/10.1007/s11263-020-01357-4

  40. Wiyatno, R.R., Xu, A.: Physical adversarial textures that fool visual object tracking. In: ICCV (2019)

    Google Scholar 

  41. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. TPAMI (2015)

    Google Scholar 

  42. Xiao, C., Deng, R., Li, B., Yu, F., Liu, M., Song, D.: Characterizing adversarial examples based on spatial consistency information for semantic segmentation. In: ECCV (2018)

    Google Scholar 

  43. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: ICCV (2017)

    Google Scholar 

  44. Xie, C., Wu, Y., Maaten, L.V.d., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: CVPR (2019)

    Google Scholar 

  45. Zhang, T., Xu, C., Yang, M.H.: Multi-task correlation particle filter for robust object tracking. In: CVPR (2017)

    Google Scholar 

  46. Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual tracking. In: CVPR (2019)

    Google Scholar 

  47. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: ECCV (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2016YFB1001003), NSFC (U19B2035, 61527804, 60906119), STCSM (18DZ1112300). C. Ma was sponsored by Shanghai Pujiang Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, S., Ma, C., Song, Y., Yang, X. (2020). Robust Tracking Against Adversarial Attacks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12364. Springer, Cham. https://doi.org/10.1007/978-3-030-58529-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58529-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58528-0

  • Online ISBN: 978-3-030-58529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics