Abstract
We present a learning-based method for interpolating and manipulating 3D shapes represented as point clouds, that is explicitly designed to preserve intrinsic shape properties. Our approach is based on constructing a dual encoding space that enables shape synthesis and, at the same time, provides links to the intrinsic shape information, which is typically not available on point cloud data. Our method works in a single pass and avoids expensive optimization, employed by existing techniques. Furthermore, the strong regularization provided by our dual latent space approach also helps to improve shape recovery in challenging settings from noisy point clouds across different datasets. Extensive experiments show that our method results in more realistic and smoother interpolations compared to baselines. Both the code and our pre-trained network can be found online: https://github.com/mrakotosaon/intrinsic_interpolations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 40–49. Stockholmsmässan, Stockholm Sweden, 10–15 July 2018
Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 157–164. ACM Press/Addison-Wesley Publishing Co. (2000)
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM Transactions on Graphics (TOG), vol. 24, pp. 408–416. ACM (2005)
Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 1(5), 698–700 (1987)
Ben-Hamu, H., Maron, H., Kezurer, I., Avineri, G., Lipman, Y.: Multi-chart generative surface modeling. In: SIGGRAPH Asia 2018 Technical Papers, p. 215. ACM (2018)
Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3794–3801 (2014)
Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: registering human bodies in motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6233–6242, July 2017
Bonneel, N., Rabin, J., Peyré, G., Pfister, H.: Sliced and radon Wasserstein Barycenters of measures. J. Math. Imaging Vis. 51(1), 22–45 (2015)
Boscaini, D., Eynard, D., Kourounis, D., Bronstein, M.M.: Shape-from-operator: recovering shapes from intrinsic operators. In: Computer Graphics Forum, vol. 34, pp. 265–274. Wiley Online Library (2015)
Carmo, M.P.D.: Riemannian geometry. Birkhäuser (1992)
Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., van der Smagt, P.: Metrics for deep generative models. arXiv preprint arXiv:1711.01204 (2017)
Chern, A., Knöppel, F., Pinkall, U., Schröder, P.: Shape from metric. ACM Trans. Graph. (TOG) 37(4), 63 (2018)
Corman, E., Solomon, J., Ben-Chen, M., Guibas, L., Ovsjanikov, M.: Functional characterization of intrinsic and extrinsic geometry. ACM Trans. Graph. (TOG) 36(2), 1–17 (2017)
Crane, K., Pinkall, U., Schröder, P.: Spin transformations of discrete surfaces. ACM Trans. Graph. (TOG) 30(4), 104 (2011)
Freifeld, O., Black, M.J.: Lie bodies: a manifold representation of 3D human shape. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_1
Frenzel, M.F., Teleaga, B., Ushio, A.: Latent space cartography: generalised metric-inspired measures and measure-based transformations for generative models. arXiv preprint arXiv:1902.02113 (2019)
Gao, L., Chen, S.Y., Lai, Y.K., Xia, S.: Data-driven shape interpolation and morphing editing. Comput. Graph. Forum 36(8), 19–31 (2017)
Gao, L., Lai, Y.K., Huang, Q.X., Hu, S.M.: A data-driven approach to realistic shape morphing. Comput. Graph. Forum 32(2pt4), 449–457 (2013)
Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Glaser, L.C., Rushing, T.B. (eds.) Geometric Topology. LNM, vol. 438, pp. 225–239. Springer, Heidelberg (1975). https://doi.org/10.1007/BFb0066118
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: 3D-coded: 3D correspondences by deep deformation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 230–246 (2018)
Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.P.: A statistical model of human pose and body shape. Comput. Graph. Forum 28(2), 337–346 (2009)
Heeren, B., Rumpf, M., Schröder, P., Wardetzky, M., Wirth, B.: Exploring the geometry of the space of shells. In: Computer Graphics Forum, vol. 33, pp. 247–256. Wiley Online Library (2014)
Heeren, B., Rumpf, M., Schröder, P., Wardetzky, M., Wirth, B.: Splines in the space of shells. Comput. Graph. Forum 35(5), 111–120 (2016)
Heeren, B., Rumpf, M., Wardetzky, M., Wirth, B.: Time-discrete geodesics in the space of shells. Comput. Graph. Forum 31(5), 1755–1764 (2012)
Huang, J., et al.: Subspace gradient domain mesh deformation. ACM Trans. Graph. (TOG) 25(3), 1126–1134 (2006)
Huang, R., Rakotosaona, M.J., Achlioptas, P., Guibas, L., Ovsjanikov, M.: OperatorNet: recovering 3D shapes from difference operators. arXiv preprint arXiv:1904.10754 (2019)
Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. (TOG) 24(3), 1134–1141 (2005)
Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)
Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. ACM Trans. Graph. (TOG) 26(3), 64 (2007)
Laine, S.: Feature-based metrics for exploring the latent space of generative models (2018)
Lazarus, F., Verroust, A.: Three-dimensional metamorphosis: a survey. Vis. Comput. 14(8), 373–389 (1998)
Li, C.L., Zaheer, M., Zhang, Y., Poczos, B., Salakhutdinov, R.: Point cloud GAN. arXiv preprint arXiv:1810.05795 (2018)
Lipman, Y., Cohen-Or, D., Gal, R., Levin, D.: Volume and shape preservation via moving frame manipulation. ACM Trans. Graph. (TOG) 26(1), 5 (2007)
Liu, X., Han, Z., Wen, X., Liu, Y.S., Zwicker, M.: L2G auto-encoder: understanding point clouds by local-to-global reconstruction with hierarchical self-attention. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 989–997. ACM (2019)
Michor, P.W., Mumford, D.B.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (2006)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the CVPR, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)
von Radziewsky, P., Eisemann, E., Seidel, H.P., Hildebrandt, K.: Optimized subspaces for deformation-based modeling and shape interpolation. Comput. Graph. 58, 128–138 (2016)
Sassen, J., Heeren, B., Hildebrandt, K., Rumpf, M.: Solving variational problems using nonlinear rotation-invariant coordinates. In: Bommes, D., Huang, H. (eds.) Symposium on Geometry Processing 2019- Posters. The Eurographics Association (2019)
Shao, H., Kumar, A., Thomas Fletcher, P.: The Riemannian geometry of deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 315–323 (2018)
Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4548–4557 (2018)
Solomon, J., et al.: Convolutional Wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graph. (TOG) 34(4), 66 (2015)
Varol, G., et al.: Learning from synthetic humans. In: CVPR (2017)
Vaxman, A., Müller, C., Weber, O.: Conformal mesh deformations with Möbius transformations. ACM Trans. Graph. (TOG) 34(4), 55 (2015)
Von Funck, W., Theisel, H., Seidel, H.P.: Vector field based shape deformations. ACM Trans. Graph. (TOG) 25(3), 1118–1125 (2006)
Wang, Y., Liu, B., Tong, Y.: Linear surface reconstruction from discrete fundamental forms on triangle meshes. In: Computer Graphics Forum, vol. 31, pp. 2277–2287. Wiley Online Library (2012)
Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A continuum mechanical approach to geodesics in shape space. Int. J. Comput. Vis. 93(3), 293–318 (2011)
Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)
Xu, D., Zhang, H., Wang, Q., Bao, H.: Poisson shape interpolation. Graph. Models 68(3), 268–281 (2006)
Zhang, Z., Li, G., Lu, H., Ouyang, Y., Yin, M., Xian, C.: Fast as-isometric-as-possible shape interpolation. Comput. Graph. 46, 244–256 (2015)
Zuffi, S., Kanazawa, A., Jacobs, D., Black, M.J.: 3D menagerie: modeling the 3D shape and pose of animals. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Acknowledgements
Parts of this work were supported by the KAUST CRG-2017-3426 Award and the ERC Starting Grant No. 758800 (EXPROTEA).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rakotosaona, MJ., Ovsjanikov, M. (2020). Intrinsic Point Cloud Interpolation via Dual Latent Space Navigation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-58536-5_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58535-8
Online ISBN: 978-3-030-58536-5
eBook Packages: Computer ScienceComputer Science (R0)