Skip to main content

Visual Memorability for Robotic Interestingness via Unsupervised Online Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

In this paper, we explore the problem of interesting scene prediction for mobile robots. This area is currently underexplored but is crucial for many practical applications such as autonomous exploration and decision making. Inspired by industrial demands, we first propose a novel translation-invariant visual memory for recalling and identifying interesting scenes, then design a three-stage architecture of long-term, short-term, and online learning. This enables our system to learn human-like experience, environmental knowledge, and online adaption, respectively. Our approach achieves much higher accuracy than the state-of-the-art algorithms on challenging robotic interestingness datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Team Explorer won the first place at the DARPA SubT Tunnel Circuit.

  2. 2.

    Real-time means processing images as fast as human brain, i.e., 100 ms/frame [31].

References

  1. http://theairlab.org/dataset/interestingness

  2. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 481–490 (2019)

    Google Scholar 

  3. Amengual, X., Bosch, A., de la Rosa, J.L.: Review of methods to predict social image interestingness and memorability. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 64–76. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23192-1_6

    Chapter  Google Scholar 

  4. Brady, T.F., Konkle, T., Alvarez, G.A., Oliva, A.: Visual long-term memory has a massive storage capacity for object details. Proc. Natl. Acad. Sci. 105(38), 14325–14329 (2008)

    Article  Google Scholar 

  5. Chaabouni, S., Benois-Pineau, J., Zemmari, A., Ben Amar, C.: Deep saliency: prediction of interestingness in video with CNN. In: Benois-Pineau, J., Le Callet, P. (eds.) Visual Content Indexing and Retrieval with Psycho-Visual Models. MSA, pp. 43–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57687-9_3

    Chapter  Google Scholar 

  6. Constantin, M.G., Redi, M., Zen, G., Ionescu, B.: Computational understanding of visual interestingness beyond semantics: literature survey and analysis of covariates. ACM Comput. Surv. (CSUR) 52(2), 25 (2019)

    Article  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  8. Demarty, C.-H., et al.: Predicting interestingness of visual content. In: Benois-Pineau, J., Le Callet, P. (eds.) Visual Content Indexing and Retrieval with Psycho-Visual Models. MSA, pp. 233–265. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57687-9_10

    Chapter  Google Scholar 

  9. Demarty, C.H., Sjöberg, M., Ionescu, B., Do, T.T., Gygli, M., Duong, N.: Mediaeval 2017 predicting media interestingness task (2017)

    Google Scholar 

  10. Dhar, S., Ordonez, V., Berg, T.L.: High level describable attributes for predicting aesthetics and interestingness. In: CVPR 2011, pp. 1657–1664. IEEE (2011)

    Google Scholar 

  11. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S., Yao, Y.: Interestingness prediction by robust learning to rank. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 488–503. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_32

    Chapter  Google Scholar 

  12. Fu, Y., et al.: Robust subjective visual property prediction from crowdsourced pairwise labels. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 563–577 (2015)

    Article  Google Scholar 

  13. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1705–1714 (2019)

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, New York (2016)

    MATH  Google Scholar 

  15. Grabner, H., Nater, F., Druey, M., Van Gool, L.: Visual interestingness in image sequences. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 1017–1026. ACM (2013)

    Google Scholar 

  16. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)

  17. Gygli, M., Soleymani, M.: Analyzing and predicting gif interestingness. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 122–126. ACM (2016)

    Google Scholar 

  18. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)

    Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  20. Ito, Y., Kitani, K.M., Bagnell, J.A., Hebert, M.: Detecting interesting events using unsupervised density ratio estimation. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7585, pp. 151–161. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33885-4_16

    Chapter  Google Scholar 

  21. Jiang, Y.G., Wang, Y., Feng, R., Xue, X., Zheng, Y., Yang, H.: Understanding and predicting interestingness of videos. In: Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)

    Google Scholar 

  22. Kim, Y., Kim, M., Kim, G.: Memorization precedes generation: learning unsupervised GANs with memory networks. In: The International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  23. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991)

    Article  Google Scholar 

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018)

    Google Scholar 

  26. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  27. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 341–349 (2017)

    Google Scholar 

  28. Oßwald, S., Bennewitz, M., Burgard, W., Stachniss, C.: Speeding-up robot exploration by exploiting background information. IEEE Robot. Autom. Lett. 1(2), 716–723 (2016)

    Article  Google Scholar 

  29. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  30. Phillips, W.: On the distinction between sensory storage and short-term visual memory. Percept. Psychophys. 16(2), 283–290 (1974)

    Article  Google Scholar 

  31. Potter, M.C., Levy, E.I.: Recognition memory for a rapid sequence of pictures. J. Exp. Psychol. 81(1), 10 (1969)

    Article  Google Scholar 

  32. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by back-propagating errors. Cognit. Model. 5(3), 1 (1988)

    MATH  Google Scholar 

  33. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning, pp. 1842–1850 (2016)

    Google Scholar 

  34. Shen, Y., Demarty, C.H., Duong, N.Q.: Deep learning for multimodal-based video interestingness prediction. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 1003–1008. IEEE (2017)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Research (2015)

    Google Scholar 

  36. Wang, C.: Kernel learning for visual perception. Ph.D. thesis, Nanyang Technological University (2019)

    Google Scholar 

  37. Wang, C., Yang, J., Xie, L., Yuan, J.: Kervolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 31–40 (2019)

    Google Scholar 

  38. Wang, C., Zhang, L., Xie, L., Yuan, J.: Kernel cross-correlator. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  39. Wang, S., Chen, S., Zhao, J., Jin, Q.: Video interestingness prediction based on ranking model. In: Proceedings of the Joint Workshop of the 4th Workshop on Affective Social Multimedia Computing and first Multi-Modal Affective Computing of Large-Scale Multimedia Data, pp. 55–61. ACM (2018)

    Google Scholar 

  40. Wang, W., Ahuja, A., Zhang, Y., Bonatti, R., Scherer, S.: Improved generalization of heading direction estimation for aerial filming using semi-supervised regression. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5901–5907. IEEE (2019)

    Google Scholar 

  41. Zhang, P., Wang, D., Lu, H., Wang, H., Yin, B.: Learning uncertain convolutional features for accurate saliency detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 212–221 (2017)

    Google Scholar 

  42. Zhao, B., Fei-Fei, L., Xing, E.P.: Online detection of unusual events in videos via dynamic sparse coding. In: CVPR 2011, pp. 3313–3320. IEEE (2011)

    Google Scholar 

  43. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoencoder for video anomaly detection. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1933–1941 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by ONR grant #N0014-19-1-2266. The human subject survey was approved under #2019_00000522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Scherer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4544 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Wang, W., Qiu, Y., Hu, Y., Scherer, S. (2020). Visual Memorability for Robotic Interestingness via Unsupervised Online Learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58536-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58535-8

  • Online ISBN: 978-3-030-58536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics