Skip to main content

Efficient Spatio-Temporal Recurrent Neural Network for Video Deblurring

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12351))

Included in the following conference series:

  • 4862 Accesses

Abstract

Real-time video deblurring still remains a challenging task due to the complexity of spatially and temporally varying blur itself and the requirement of low computational cost. To improve the network efficiency, we adopt residual dense blocks into RNN cells, so as to efficiently extract the spatial features of the current frame. Furthermore, a global spatio-temporal attention module is proposed to fuse the effective hierarchical features from past and future frames to help better deblur the current frame. For evaluation, we also collect a novel dataset with paired blurry/sharp video clips by using a co-axis beam splitter system. Through experiments on synthetic and realistic datasets, we show that our proposed method can achieve better deblurring performance both quantitatively and qualitatively with less computational cost against state-of-the-art video deblurring methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Bar, L., Berkels, B., Rumpf, M., Sapiro, G.: A variational framework for simultaneous motion estimation and restoration of motion-blurred video. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  3. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14

    Chapter  Google Scholar 

  4. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  5. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. ArXiv e-prints, March 2016

    Google Scholar 

  6. Goldstein, A., Fattal, R.: Blur-kernel estimation from spectral irregularities. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 622–635. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_45

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  11. Hyun Kim, T., Mu Lee, K.: Segmentation-free dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2766–2773 (2014)

    Google Scholar 

  12. Hyun Kim, T., Mu Lee, K.: Generalized video deblurring for dynamic scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5426–5434 (2015)

    Google Scholar 

  13. Hyun Kim, T., Mu Lee, K., Scholkopf, B., Hirsch, M.: Online video deblurring via dynamic temporal blending network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4038–4047 (2017)

    Google Scholar 

  14. Jiang, H., Zheng, Y.: Learning to see moving objects in the dark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7324–7333 (2019)

    Google Scholar 

  15. Kim, T.H., Nah, S., Lee, K.M.: Dynamic scene deblurring using a locally adaptive linear blur model. arXiv preprint arXiv:1603.04265 (2016)

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Lee, H.S., Kwon, J., Lee, K.M.: Simultaneous localization, mapping and deblurring. In: 2011 International Conference on Computer Vision, pp. 1203–1210. IEEE (2011)

    Google Scholar 

  18. Levin, A.: Blind motion deblurring using image statistics. In: Advances in Neural Information Processing Systems, pp. 841–848 (2007)

    Google Scholar 

  19. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  20. Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 783–798. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_51

    Chapter  Google Scholar 

  21. Nah, S., et al.: Ntire 2019 challenge on video deblurring and super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  22. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  23. Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8102–8111 (2019)

    Google Scholar 

  24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  25. Nimisha, T.M., Kumar Singh, A., Rajagopalan, A.N.: Blur-invariant deep learning for blind-deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4752–4760 (2017)

    Google Scholar 

  26. Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: Tv-l1 optical flow estimation. Image Process. On Line 2013, 137–150 (2013)

    Article  Google Scholar 

  27. Ren, W., Pan, J., Cao, X., Yang, M.H.: Video deblurring via semantic segmentation and pixel-wise non-linear kernel. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1077–1085 (2017)

    Google Scholar 

  28. Schuler, C.J., Christopher Burger, H., Harmeling, S., Scholkopf, B.: A machine learning approach for non-blind image deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1067–1074 (2013)

    Google Scholar 

  29. Seok Lee, H., Mu Lee, K.: Dense 3D reconstruction from severely blurred images using a single moving camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 273–280 (2013)

    Google Scholar 

  30. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279–1288 (2017)

    Google Scholar 

  31. Sun, L., Cho, S., Wang, J., Hays, J.: Good image priors for non-blind deconvolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_16

    Chapter  Google Scholar 

  32. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  33. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  34. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: Edvr: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  35. Wieschollek, P., Hirsch, M., Scholkopf, B., Lensch, H.: Learning blind motion deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 231–240 (2017)

    Google Scholar 

  36. Wu, Y., Ling, H., Yu, J., Li, F., Mei, X., Cheng, E.: Blurred target tracking by blur-driven tracker. In: 2011 International Conference on Computer Vision, pp. 1100–1107. IEEE (2011)

    Google Scholar 

  37. Wulff, J., Black, M.J.: Modeling blurred video with layers. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 236–252. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_16

    Chapter  Google Scholar 

  38. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  39. Yang, J., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  40. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  41. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  42. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  43. Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2482–2491 (2019)

    Google Scholar 

  44. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision, pp. 479–486. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinqiang Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 5994 KB)

Supplementary material 2 (avi 4504 KB)

Supplementary material 3 (avi 16614 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, Z., Gao, Y., Zheng, Y., Zheng, B. (2020). Efficient Spatio-Temporal Recurrent Neural Network for Video Deblurring. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics