Skip to main content

Multi-Temporal Recurrent Neural Networks for Progressive Non-uniform Single Image Deblurring with Incremental Temporal Training

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Blind non-uniform image deblurring for severe blurs induced by large motions is still challenging. Multi-scale (MS) approach has been widely used for deblurring that sequentially recovers the downsampled original image in low spatial scale first and then further restores in high spatial scale using the result(s) from lower spatial scale(s). Here, we investigate a novel alternative approach to MS, called multi-temporal (MT), for non-uniform single image deblurring by exploiting time-resolved deblurring dataset from high-speed cameras. MT approach models severe blurs as a series of small blurs so that it deblurs small amount of blurs in the original spatial scale progressively instead of restoring the images in different spatial scales. To realize MT approach, we propose progressive deblurring over iterations and incremental temporal training with temporally augmented training data. Our MT approach, that can be seen as a form of curriculum learning in a wide sense, allows a number of state-of-the-art MS based deblurring methods to yield improved performances without using MS approach. We also proposed a MT recurrent neural network with recurrent feature maps that outperformed state-of-the-art deblurring methods with the smallest number of parameters.

D. Park and D. U. Kang—Equal contribution. Code is available at https://github.com/Dong1P/MTRNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: CVPRW (2017)

    Google Scholar 

  2. Aljadaany, R., Pal, D.K., Savvides, M.: Douglas-Rachford networks: learning both the image prior and data fidelity terms for blind image deconvolution. In: CVPR (2019)

    Google Scholar 

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE T-PAMI 33, 898–916 (2011)

    Google Scholar 

  4. Bahat, Y., Efrat, N., Irani, M.: Non-uniform Blind Deblurring by Reblurring. In: ICCV (2017)

    Google Scholar 

  5. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML (2009)

    Google Scholar 

  6. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14

    Chapter  Google Scholar 

  7. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 28, 1–8 (2009)

    Article  Google Scholar 

  8. Couzinie-Devy, F., Sun, J., Alahari, K., Ponce, J.: Learning to estimate and remove non-uniform image blur. In: CVPR (2013)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  10. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. IJCV 88, 303–338 (2010)

    Article  Google Scholar 

  11. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25, 787–794 (2006)

    Article  Google Scholar 

  12. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: CVPR (2019)

    Google Scholar 

  13. Gong, D., et al.: From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In: CVPR (2017)

    Google Scholar 

  14. Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single image deblurring using motion density functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_13

    Chapter  Google Scholar 

  15. Harmeling, S., Hirsch, M., Schölkopf, B.: Space-variant single-image blind deconvolution for removing camera shake. In: NIPS (2010)

    Google Scholar 

  16. Hirsch, M., Schuler, C.J., Harmeling, S., Schölkopf, B.: Fast removal of non-uniform camera shake. In: ICCV (2011)

    Google Scholar 

  17. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. arXiv preprint arXiv:1807.00734 (2018)

  18. Kim, T.H., Ahn, B., Lee, K.M.: Dynamic scene deblurring. In: ICCV (2013)

    Google Scholar 

  19. Kim, T.H., Lee, K.M.: Segmentation-free dynamic scene deblurring. In: CVPR (2014)

    Google Scholar 

  20. Kim, T.H., Lee, K.M.: Generalized video deblurring for dynamic scenes. In: CVPR (2015)

    Google Scholar 

  21. Kim, T.H., Lee, K.M., Schölkopf, B., Hirsch, M.: Online video deblurring via dynamic temporal blending network. In: ICCV (2017)

    Google Scholar 

  22. Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_3

    Chapter  Google Scholar 

  23. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: CVPR (2018)

    Google Scholar 

  24. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: ICCV (2019)

    Google Scholar 

  25. Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., Yang, M.H.: A comparative study for single image blind deblurring. In: CVPR (2016)

    Google Scholar 

  26. Li, Y., Kang, S.B., Joshi, N., Seitz, S.M., Huttenlocher, D.P.: Generating sharp panoramas from motion-blurred videos. In: CVPR (2010)

    Google Scholar 

  27. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: CVPR (2019)

    Google Scholar 

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  30. Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., Lee, K.M.: NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study. In: CVPRW (2019)

    Google Scholar 

  31. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR (2017)

    Google Scholar 

  32. Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: CVPR (2019)

    Google Scholar 

  33. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: CVPR (2016)

    Google Scholar 

  34. Ramakrishnan, S., Pachori, S., Gangopadhyay, A., Raman, S.: Deep generative filter for motion deblurring. In: ICCVW (2017)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  36. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38, 1439–1451 (2016)

    Article  Google Scholar 

  37. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27, 1–10 (2008)

    Google Scholar 

  38. Shen, Z., et al.: Human-aware motion deblurring. In: ICCV (2019)

    Google Scholar 

  39. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: CVPR (2017)

    Google Scholar 

  40. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: CVPR (2015)

    Google Scholar 

  41. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: CVPR (2018)

    Google Scholar 

  42. Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. In: CVPR (2010)

    Google Scholar 

  43. Wieschollek, P., Hirsch, M., Schölkopf, B., Lensch, H.P.A.: Learning blind motion deblurring. In: ICCV (2017)

    Google Scholar 

  44. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: CVPR (2013)

    Google Scholar 

  45. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  46. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: NIPS (2014)

    Google Scholar 

  47. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: CVPR (2019)

    Google Scholar 

  48. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: ECCV (2018)

    Google Scholar 

  49. Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. arXiv preprint arXiv:1904.12257 (2019)

Download references

Acknowledgement

This work was supported partly by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2017R1D1A1B05035810), the Technology Innovation Program or Industrial Strategic Technology Development Program (10077533, Development of robotic manipulation algorithm for grasping/assembling with the machine learning using visual and tactile sensing information) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI18C0316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Young Chun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9581 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, D., Kang, D.U., Kim, J., Chun, S.Y. (2020). Multi-Temporal Recurrent Neural Networks for Progressive Non-uniform Single Image Deblurring with Incremental Temporal Training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics