Skip to main content

Why Are Deep Representations Good Perceptual Quality Features?

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12367))

Included in the following conference series:

  • 4196 Accesses

Abstract

Recently, intermediate feature maps of pre-trained convolutional neural networks have shown significant perceptual quality improvements, when they are used in the loss function for training new networks. It is believed that these features are better at encoding the perceptual quality and provide more efficient representations of input images compared to other perceptual metrics such as SSIM and PSNR. However, there have been no systematic studies to determine the underlying reason. Due to the lack of such an analysis, it is not possible to evaluate the performance of a particular set of features or to improve the perceptual quality even more by carefully selecting a subset of features from a pre-trained CNN. This work shows that the capabilities of pre-trained deep CNN features in optimizing the perceptual quality are correlated with their success in capturing basic human visual perception characteristics. In particular, we focus our analysis on fundamental aspects of human perception, such as the contrast sensitivity and orientation selectivity. We introduce two new formulations to measure the frequency and orientation selectivity of the features learned by convolutional layers for evaluating deep features learned by widely-used deep CNNs such as VGG-16. We demonstrate that the pre-trained CNN features which receive higher scores are better at predicting human quality judgment. Furthermore, we show the possibility of using our method to select deep features to form a new loss function, which improves the image reconstruction quality for the well-known single-image super-resolution problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1122–1131 (2017)

    Google Scholar 

  2. Ben-Yishai, R., Bar-Or, R., Sompolinsky, H.: Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. U.S.A. 92, 3844–3848 (1995)

    Article  Google Scholar 

  3. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: IEEE CVPR (2018)

    Google Scholar 

  4. Erhan, D., Bengio, Y., Courville, A.C., Vincent, P.: Visualizing higher-layer features of a deep network (2009)

    Google Scholar 

  5. de Faria, J.M.L., Katsumi, O., Arai, M., Hirose, T.: Objective measurement of contrast sensitivity function using contrast sweep visual evoked responses. Br. J. Ophthalmol. 82(2), 168–73 (1998)

    Article  Google Scholar 

  6. Ferster, D., Miller, K.: Neural mechanisms of orientation selectivity in the visual cortex. Ann. Rev. Neurosci. 23, 441–471 (2000). https://doi.org/10.1146/annurev.neuro.23.1.441

    Article  Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423 (2016)

    Google Scholar 

  8. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  9. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)1mb model size. ArXiv abs/1602.07360 (2017)

    Google Scholar 

  10. Jayaraman, D., Mittal, A., Moorthy, A.K., Bovik, A.C.: Objective quality assessment of multiply distorted images. In: 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1693–1697 (2012)

    Google Scholar 

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4396–4405 (2018)

    Google Scholar 

  13. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)

    Google Scholar 

  14. Kim, K.J., Mantiuk, R.K., Lee, K.H.: Measurements of achromatic and chromatic contrast sensitivity functions for an extended range of adaptation luminance. In: Electronic Imaging (2013)

    Google Scholar 

  15. Krizhevsky A, Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  16. Kulikowski, J.J., Marvcelja, S., Bishop, P.O.: Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex. Biol. Cybern. 43, 187–198 (1982)

    Article  Google Scholar 

  17. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114 (2017)

    Google Scholar 

  18. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M.K., Yang, M.H.: Diverse image-to-image translation via disentangled representations. ArXiv abs/1808.00948 (2018)

    Google Scholar 

  19. Lubin, J.: A visual discrimination model for imaging system design and evaluation (1995)

    Google Scholar 

  20. Ma, C., Yang, C., Yang, X., Yang, M.: Learning a no-reference quality metric for single-image super-resolution. CoRR abs/1612.05890 (2016)

    Google Scholar 

  21. Maffei, L., Fiorentini, A.: The visual cortex as a spatial frequency analyser. Vis. Res. 13(7), 1255–67 (1973)

    Article  Google Scholar 

  22. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5188–5196 (2014)

    Google Scholar 

  23. Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Inf. Theory 20(4), 525–536 (1974). https://doi.org/10.1109/TIT.1974.1055250

    Article  MATH  Google Scholar 

  24. Mantiuk, R.K., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30, 40 (2011)

    Article  Google Scholar 

  25. Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L.: Maintaining natural image statistics with the contextual loss. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 427–443. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_27

    Chapter  Google Scholar 

  26. Nadenau, M.J., Winkler, S.M., Alleysson, D., Kunt, M.: Human vision models for perceptually optimized image processing - a review (2000)

    Google Scholar 

  27. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15, 3440–3451 (2006)

    Article  Google Scholar 

  28. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR abs/1312.6034 (2014)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  30. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks (2018)

    Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. Wu, J., Li, L., Dong, W., Shi, G., Lin, W., Kuo, C.C.J.: Enhanced just noticeable difference model for images with pattern complexity. IEEE Trans. Image Process. 26, 2682–2693 (2017)

    Article  MathSciNet  Google Scholar 

  33. Yang, C., Wang, Z., Zhu, X., Huang, C., Shi, J., Lin, D.: Pose guided human video generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 204–219. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_13

    Chapter  Google Scholar 

  34. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  35. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE CVPR (2018)

    Google Scholar 

  36. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2017)

    Google Scholar 

  37. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: NIPS (2017)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement N\(^{\circ }\) 804226 – PERDY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taimoor Tariq .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1270 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tariq, T., Tursun, O.T., Kim, M., Didyk, P. (2020). Why Are Deep Representations Good Perceptual Quality Features?. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58542-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58541-9

  • Online ISBN: 978-3-030-58542-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics