Skip to main content

Geometric Estimation via Robust Subspace Recovery

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12367))

Included in the following conference series:

Abstract

Geometric estimation from image point correspondences is the core procedure of many 3D vision problems, which is prevalently accomplished by random sampling techniques. In this paper, we consider the problem from an optimization perspective, to exploit the intrinsic linear structure of point correspondences to assist estimation. We generalize the conventional method to a robust one and extend the previous analysis for linear structure to develop several new algorithms. The proposed solutions essentially address the estimation problem by solving a subspace recovery problem to identify the inliers. Experiments on real-world image datasets for both fundamental matrix and homography estimation demonstrate the superiority of our method over the state-of-the-art in terms of both robustness and accuracy.

J. Ma—This work was supported by the National Natural Science Foundation of China under Grant nos. 61773295 and 61971165.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cmp.felk.cvut.cz/data/geometry2view/.

  2. 2.

    http://cmp.felk.cvut.cz/wbs/.

  3. 3.

    http://cmp.felk.cvut.cz/data/geometry2view/.

  4. 4.

    https://cs.adelaide.edu.au/~hwong/doku.php?id=data.

References

  1. Barath, D., Matas, J.: Graph-cut RANSAC. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6733–6741 (2018)

    Google Scholar 

  2. Barath, D., Matas, J., Noskova, J.: MAGSAC: marginalizing sample consensus. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10197–10205 (2019)

    Google Scholar 

  3. Bazin, J.C., Li, H., Kweon, I.S., Demonceaux, C., Vasseur, P., Ikeuchi, K.: A branch-and-bound approach to correspondence and grouping problems. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1565–1576 (2012)

    Article  Google Scholar 

  4. Bazin, J.-C., Seo, Y., Hartley, R., Pollefeys, M.: Globally optimal inlier set maximization with unknown rotation and focal length. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 803–817. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_52

    Chapter  Google Scholar 

  5. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)

    Article  Google Scholar 

  6. Cai, Z., Chin, T.J., Koltun, V.: Consensus maximization tree search revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1637–1645 (2019)

    Google Scholar 

  7. Cai, Z., Chin, T.J., Le, H., Suter, D.: Deterministic consensus maximization with biconvex programming. In: Proceedings of the European Conference on Computer Vision, pp. 685–700 (2018)

    Google Scholar 

  8. Campbell, D., Petersson, L., Kneip, L., Li, H.: Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–10 (2017)

    Google Scholar 

  9. Chum, O., Matas, J.: Matching with PROSAC-progressive sample consensus. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 220–226 (2005)

    Google Scholar 

  10. Chum, O., Matas, J.: Optimal randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1472–1482 (2008)

    Article  Google Scholar 

  11. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45243-0_31

    Chapter  Google Scholar 

  12. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 772–779 (2005)

    Google Scholar 

  13. Ding, T., et al.: Noisy dual principal component pursuit. In: Proceedings of the International Conference on Machine Learning, pp. 1617–1625 (2019)

    Google Scholar 

  14. Enqvist, O., Ask, E., Kahl, F., Åström, K.: Tractable algorithms for robust model estimation. Int. J. Comput. Vis. 112(1), 115–129 (2015)

    Article  MathSciNet  Google Scholar 

  15. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Fragoso, V., Sen, P., Rodriguez, S., Turk, M.: EVSAC: accelerating hypotheses generation by modeling matching scores with extreme value theory. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2472–2479 (2013)

    Google Scholar 

  17. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  18. Le, H.M., Chin, T.J., Eriksson, A., Do, T.T., Suter, D.: Deterministic approximate methods for maximum consensus robust fitting. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  19. Lebeda, K., Matas, J., Chum, O.: Fixing the locally optimized RANSAC-full experimental evaluation. In: Proceedings of the British Machine Vision Conference, pp. 1–11 (2012)

    Google Scholar 

  20. Lerman, G., Maunu, T.: An overview of robust subspace recovery. Proc. IEEE 106(8), 1380–1410 (2018)

    Article  Google Scholar 

  21. Lerman, G., McCoy, M.B., Tropp, J.A., Zhang, T.: Robust computation of linear models by convex relaxation. Found. Comput. Math. 15(2), 363–410 (2015)

    Article  MathSciNet  Google Scholar 

  22. Li, H.: Consensus set maximization with guaranteed global optimality for robust geometry estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1074–1080 (2009)

    Google Scholar 

  23. Ma, J., Zhao, J., Jiang, J., Zhou, H., Guo, X.: Locality preserving matching. Int. J. Comput. Vis. 127(5), 512–531 (2019)

    Article  MathSciNet  Google Scholar 

  24. Ma, J., Zhao, J., Tian, J., Yuille, A.L., Tu, Z.: Robust point matching via vector field consensus. IEEE Trans. Image Process. 23(4), 1706–1721 (2014)

    Article  MathSciNet  Google Scholar 

  25. Matas, J., Chum, O.: Randomized RANSAC with Td, d test. Image Vis. Comput. 22(10), 837–842 (2004)

    Article  Google Scholar 

  26. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  27. Ni, K., Jin, H., Dellaert, F.: GroupSAC: efficient consensus in the presence of groupings. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2193–2200 (2009)

    Google Scholar 

  28. Purkait, P., Zach, C., Eriksson, A.: Maximum consensus parameter estimation by reweighted \(\ell _1\) methods. In: Pelillo, M., Hancock, E. (eds.) EMMCVPR 2017. LNCS, vol. 10746, pp. 312–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78199-0_21

    Chapter  Google Scholar 

  29. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2012)

    Article  Google Scholar 

  30. Torr, P.H.S.: Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. Int. J. Comput. Vis. 50(1), 35–61 (2002)

    Article  Google Scholar 

  31. Torr, P.H., Nasuto, S.J., Bishop, J.M.: NAPSAC: high noise, high dimensional robust estimation-it’s in the bag. In: British Machine Vision Conference (BMVC) (2002)

    Google Scholar 

  32. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

    Article  Google Scholar 

  33. Tsakiris, M.C., Vidal, R.: Dual principal component pursuit. J. Mach. Learn. Res. 19(1), 684–732 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Vincent, E., Laganiére, R.: Detecting planar homographies in an image pair. In: Proceedings of the International Symposium on Image and Signal Processing and Analysis, pp. 182–187 (2001)

    Google Scholar 

  35. Zhu, Z., Wang, Y., Robinson, D., Naiman, D., Vidal, R., Tsakiris, M.: Dual principal component pursuit: improved analysis and efficient algorithms. In: Advances in Neural Information Processing Systems, pp. 2171–2181 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayi Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, A., Jiang, X., Wang, Y., Jiang, J., Ma, J. (2020). Geometric Estimation via Robust Subspace Recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58542-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58541-9

  • Online ISBN: 978-3-030-58542-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics