
Towards Generalization Across Depth for
Monocular 3D Object Detection

Andrea Simonelli1,2,3, Samuel Rota Buló1, Lorenzo Porzi1, Elisa Ricci2,3, and
Peter Kontschieder1

1 Mapillary Research, Graz, Austria
https://research.mapillary.com
2 University of Trento, Trento, Italy

3 Fondazione Bruno Kessler, Trento, Italy

Abstract. While expensive LiDAR and stereo camera rigs have enabled
the development of successful 3D object detection methods, monocular
RGB-only approaches lag much behind. This work advances the state
of the art by introducing MoVi-3D , a novel, single-stage deep architec-
ture for monocular 3D object detection. MoVi-3D builds upon a novel
approach which leverages geometrical information to generate, both at
training and test time, virtual views where the object appearance is
normalized with respect to distance. These virtually generated views fa-
cilitate the detection task as they significantly reduce the visual appear-
ance variability associated to objects placed at different distances from
the camera. As a consequence, the deep model is relieved from learning
depth-specific representations and its complexity can be significantly re-
duced. In particular, in this work we show that, thanks to our virtual
views generation process, a lightweight, single-stage architecture suffices
to set new state-of-the-art results on the popular KITTI3D benchmark.

1 Introduction

With the advent of autonomous driving, significant attention has been devoted
in the computer vision and robotics communities to the semantic understand-
ing of urban scenes. In particular, object detection is one of the most promi-
nent challenges that must be addressed in order to build autonomous vehi-
cles able to drive safely over long distances. In the last decade, thanks to the
emergence of deep neural networks and to the availability of large-scale anno-
tated datasets, the state of the art in 2D object detection has improved sig-
nificantly [27,18,25,26,15,11], reaching near-human performance [16]. However,
detecting objects in the image plane and, in general, reasoning in 2D, is not suf-
ficient for autonomous driving applications. Safe navigation of self-driving cars
requires accurate 3D localization of vehicles, pedestrians and, in general, any
object in the scene. As a consequence, depth information is needed. While depth
can be obtained from expensive LiDAR sensors or stereo camera rigs, recently,
there has been an increasing interest in replacing them with cheaper sensors,
such as RGB cameras. Unsurprisingly, state-of-the-art 3D detection methods
exploit a multi-modal approach, combining data from RGB images with LiDAR
information [13,34,31,30]. However, recent works have attempted to recover the

ar
X

iv
:1

91
2.

08
03

5v
3

 [
cs

.C
V

]
 2

 A
pr

 2
02

0

https://research.mapillary.com

2 A. Simonelli et al.

Input RGB Image

 Single-Stage
3D Detector

Output 3D Bounding Boxes

Distance Issue

Camera

Proposed Virtual Images

Proposed Detector

Distance

Object ViewsTop View

Fig. 1: We aim at predicting a 3D bounding box for each object given a single
image (left). In this image, the scale of an object heavily depends on its distance
with respect to the camera. For this reason the complexity of the detection in-
creases as the distance grows. Instead of performing the detection on the original
image, we perform it on virtual images (middle). Each virtual image presents a
cropped and and scaled version of the original image that preserves the scale of
objects as if the image was taken at a different, given depth. Colors and masks
have been used for illustrative purposes only.

3D location and pose of objects from a monocular RGB input [32,1,9], with the
ultimate goal of replacing LiDAR with cheaper sensors such as off-the-shelf cam-
eras. Despite the ill-posed nature of the problem, these works have shown that
it is possible to infer the 3D position and pose of vehicles in road scenes given a
single image with a reasonable degree of accuracy.

This work advances the state of the art by introducing MoVi-3D , a novel,
single-stage architecture for Monocular 3D object detection, and new training
and inference schemes, which enable the possibility for the model to generalize
across depth by exploiting Virtual views. A virtual view is an image transfor-
mation that uses geometrical prior knowledge to factor out the variability in the
scale of objects due to depth. Each transformation is related to a predefined
3D viewport in space with some prefixed size in meters, i.e. a 2D window par-
allel to the image plane that is ideally positioned in front of an object to be
detected, and provides a virtual image of the scene visible through the viewport
from the original camera, re-scaled to fit a predetermined resolution (see Fig. 1).
By doing so, no matter the depth of the object, its appearance in the virtual
image will be consistent in terms of scale. This allows to partially sidestep the
burden of learning depth-specific features that are needed to distinguish objects
at different depths, thus enabling the use of simpler models. Also we can limit
the range of depths where the network is supposed to detect objects, because we
will make use of multiple 3D viewports both at training and inference time. For
this reason, we can tackle successfully the 3D object detection problem with a
lightweight, single-stage architecture in the more challenging multi-class setting.

We evaluate the proposed virtual view generation procedure in combination
with our single-stage architecture on the KITTI 3D Object Detection bench-
mark [5], comparing with state-of-the-art methods, and perform an extensive
ablation study to assess the validity of our architectural choices. Thanks to our
novel training strategy, despite its simplicity, our method is currently the best
performing monocular 3D object detection method on KITTI3D that makes no
use of additional information at both training and inference time.

Towards Generalization Across Depth for Monocular 3D Object Detection 3

2 Related Work

We review recent works on monocular 3D object detection covering both ap-
proaches based on RGB-only and those using depth, pseudo-LiDAR or 3D shape
information.

RGB data only. 3D object detection from RGB input is inherently chal-
lenging as depth information is not available. To compensate for the ill-posed
nature of the problem, previous approaches have devised different strategies.
Deep3DBox [21] proposes to estimate the full 3D pose and the dimensions of ob-
jects from 2D bounding boxes by considering projective geometry constraints.
OFTNet [28] considers an orthographic feature transform to map image-level
features into a 3D voxel map. The map is subsequently reduced to a 2D repre-
sentation (birds-eye view). Mono3D [4] generates 3D candidate boxes and scores
them according to semantic segmentation, contextual, shape and class-specific
features. At test time boxes are computed based on RGB images only, but the
method requires semantic and instance segmentation maps as input.

ROI-10D [20] proposes a deep architecture equipped with a loss that operates
directly in the space of 3D bounding boxes. In [17], the authors employ a deep
network to compute the fitting degree between the proposals and the object
in terms of 3D IoU scores, and introduce an approach to filter the estimated
box proposals based on 2D object cues only. To avoid computing features only
from 2D proposals, GS3D [12] proposes to derive a coarse cuboid and to extract
features from the visible surfaces of the projected cuboid.

MonoGRNet [24] uses a deep network with four specialized modules for dif-
ferent tasks: 2D detection, instance depth estimation, 3D location estimation
and local corner regression. The network operates by first computing the depth
and 2D projection of the 3D box center and then estimating the corner coor-
dinates locally. MonoDIS [32] describes a two-stage architecture for monocular
3D object detection which disentangles dependencies of different parameters by
introducing a novel loss enabling to handle groups of parameters separately.
MonoPSR [9] uses a deep network to jointly compute 3D bounding boxes from
2D ones and estimate instance point clouds in order to recover shape and scale
information. SMOKE [19] proposes to solve the detection task by means of a
pixel-based regression and key-point estimation. The regression is performed
utilizing a variation of the disentangled loss introduced in [32].

M3D-RPN [1] and SS3D [8] are the most closely-related approaches to ours.
They also implement a single-stage multi-class model. In particular, the for-
mer proposes an end-to-end region proposal network using canonical and depth-
aware convolutions to generate the predictions, which are then fed to a post-
optimization module. SS3D [8] proposes to detect 2D key-points as well as predict
object characteristics with their corresponding uncertainties. Similarly to M3D-
RPN, the predictions are subsequently fed to an optimization procedure to ob-
tain the final predictions. Both M3D-RPN and SS3D apply a post-optimization
phase and, differently from our approach, these methods benefit from a multi-
stage training procedure.

4 A. Simonelli et al.

Including depth or pseudo-LiDAR. Some works are based on the idea
that more accurate 3D detections can be obtained with the support of depth
maps or pseudo-LiDAR point clouds automatically generated from image input.
For instance, ROI-10D [20] exploits depth maps inferred with SuperDepth [23].
Pseudo-Lidar [33] takes advantage of pre-computed depth maps to convert RGB
images to 3D point clouds. Then, state-of-the-art LiDAR-based 3D object de-
tection methods are employed. Pseudo-Lidar++ [35] improves over the Pseudo-
LiDAR framework adapting the stereo network architecture and the loss func-
tion for direct depth estimation, thus producing more accurate predictions for
far away objects.

Including 3D shape information. 3D-RCNN [10] proposes a convolutional
network based on inverse-graphics which maps image regions to the 3D shape
and pose of an object instance. In [36] the problem of scene understanding is
addressed from the perspective of 3D shape modeling, and a 3D scene repre-
sentation is proposed to jointly reason about the 3D shape of multiple objects.
Deep-MANTA [2] uses a multi-task deep architecture for simultaneous vehicle
detection, part localization, part visibility characterization and 3D dimension
estimation. Mono3D++ [7] uses a morphable wireframe model for estimating
vehicles’ 3D shape and pose and optimizes a projection consistency loss between
the generated 3D hypotheses and the corresponding 2D pseudo-measurements.
In [22] a shape-aware scheme is proposed in order to estimate the 3D pose and
shape of a vehicle, given the shape priors encoded in form of keypoints.

3 Problem Description

In this work we address the problem of monocular 3D object detection, illus-
trated in Fig. 2. Given a single RGB image, the task consists in predicting 3D
bounding boxes and an associated class label for each visible object. The set of
object categories is predefined and we denote by nc their total number.

In contrast to other methods in the literature, our method makes no use of ad-
ditional information such as pairs of stereo images, or depth derived from LiDAR
or obtained from monocular depth predictors (supervised or self-supervised). In
order to boost their performance, the latter approaches tend to use depth pre-
dictors that are pre-trained on the same dataset where monocular 3D object
detection is going to be run. Accordingly, the setting we consider is the hardest

Output 3D Bounding BoxInput RGB Image Top View

Fig. 2: Illustration of the Monocular 3D Object Detection task. Given an input
image (left), the model predicts a 3D box for each object (middle). Each box
has its 3D dimensions s = (W,H,L), 3D center c = (x, y, z) and rotation (α).

Towards Generalization Across Depth for Monocular 3D Object Detection 5

and in general ill-posed. The only training data we rely on consists of RGB im-
ages with annotated 3D bounding boxes. Nonetheless, we assume that per-image
camera calibrations are available at both training and test time.

4 Proposed Method

A deep neural network that is trained to detect 3D objects in a scene from
a single RGB image is forced to build multiple representations for the same
object, in a given pose, depending on the distance of the object from the camera.
This is, on one hand, inherently due to the scale difference that two objects
positioned at different depths in the scene exhibit when projected on the image
plane. On the other hand, it is the scale difference that enables the network
to regress the object’s depth. In other words, the network has to build distinct
representations devoted to recognize objects at specific depths and there is a
little margin of generalization across different depths. As an example, if we train
a 3D car detector by limiting examples in a range of maximum 20m and then at
test time try to detect objects at distances larger than 20m, the detector will fail
to deliver proper predictions. We conducted this and other similar experiments
and report results in Tab. 4, where we show the performance of a state-of-the-
art method MonoDIS [32] against the proposed approach, when training and
validating on different depth ranges. Standard approaches tend to fail in this task
as opposed to the proposed approach, because they lack the ability to generalize
across depths. As a consequence, when we train the 3D object detector we need
to scale up the network’s capacity as a function of the depth ranges we want to
be able to cover and scale up accordingly the amount of training data, in order
to provide enough examples of objects positioned at several possible depths.

Our goal is to devise a training and inference procedure that enables general-
ization across depth, by indirectly forcing the models to develop representations
for objects that are less dependent on their actual depth in the scene. The idea is
to feed the model with transformed images that have been put into a canonical
form that depends on some query depth. To illustrate the idea, consider a car
in the scene and assume to virtually put a 2D window in front of the car. The
window is parallel to the image plane and has some pre-defined size in meters.
Given an output resolution, we can crop a 2D region from the original image cor-
responding to the projection of the aforementioned window on the image plane
and rescale the result to fit the desired resolution. After this transformation, no
matter where the car is in space, we obtain an image of the car that is consistent
in terms of the scale of the object. Clearly, depth still influences the appearance,
e.g. due to perspective deformations, but by removing the scale factor from the
nuisance variables we are able to simplify the task that has to be solved by the
model. In order to apply the proposed transformation we need to know the lo-
cation of the 3D objects in advance, so we have a chicken-egg problem. In the
following, we will show that this issue can be easily circumvented by exploiting
geometric priors about the position of objects while designing the training and
inference stages.

6 A. Simonelli et al.

Fig. 3: Notations about the 3D viewport.

Image transformation. The proposed transformation is applied to the original
image given a desired 3D viewport. A 3D viewport is a rectangle in 3D space,
parallel to the camera image plane and positioned at some depth Zv. The top-left
corner of the viewport in 3D space is given by (Xv,Yv,Zv) and the viewport has
a pre-defined height Hv thus spanning the range [Yv − Hv,Yv] along the Y -axis
(see Fig. 3). We also specify a desired resolution hv × wv for the images that
should be generated. The size Wv of the viewport along the X-axis can then be
computed as Wv = wv

Hv

hv

fy
fx

, where fx/y are the x/y focal lengths. In practice,
given an image captured with the camera and the viewport described above,
we can generate a new image as follows. We compute the top-left and bottom-
right corners of the viewport, namely (Xv,Yv,Zv) and (Xv + Wv,Yv − Hv,Zv)
respectively, and project them to the image plane of the camera, yielding the
top-left and bottom-right corners of a 2D viewport. We crop it and rescale it to
the desired resolution wv×hv to get the final output. We call the result a virtual
image generated by the given 3D viewport.

Training. The goal of the training procedure is to build a network that is able to
make correct predictions within a limited depth range given an image generated
from a 3D viewport. Accordingly, we define a depth resolution parameter Zres

that is used to delimit the range of action of the network. Given a training image
from the camera and a set of ground-truth 3D bounding boxes, we generate nv
virtual images from random 3D viewports. The sampling process however is not
uniform, because objects occupy a limited portion of the image and drawing 3D
viewports blindly in 3D space would make the training procedure very ineffi-
cient. Instead, we opt for a ground-truth-guided sampling procedure, where we
repeatedly draw (without replacement) a ground-truth object and then sample
a 3D viewport in a neighborhood thereof so that the object is completely visible
in the virtual image. In Fig. 4 we provide an example of such a sampling result.
The location of the 3D viewport is perturbed with respect to the position of the
target ground-truth object in order to obtain a model that is robust to depth
ranges up to the predefined depth resolution Zres, which in turn plays an impor-
tant role at inference time. Specifically, we position the 3D viewport in a way
that Yv = Ŷ and Zv = Ẑ, where Ŷ and Ẑ are the upper and lower bounds of
the target ground-truth box along the Y - and Z-axis, respectively. From there,
we shift Zv by a random value in the range [−Zres

2 , 0], perturb randomly Xv in a
way that the object is still entirely visible in the virtual image and perturb Yv
within some pre-defined range. The ground-truth boxes with Ẑ falling outside
the range of validity [0,Zres] are set to ignore, i.e. there will be no training signal

Towards Generalization Across Depth for Monocular 3D Object Detection 7

Object Virtual View

Input RGB Image

Annotations

Camera Parameters

3D Viewport Creation

3D Viewport Projection

Camera

3D

Image

Target object Target Viewport

Fig. 4: Training virtual image creation. We randomly sample a target object
(dark-red car). Given the input image, object position and camera parameters,
we compute a 3D viewport that we place at z = Zv. We then project the 3D
viewport onto the image plane, resulting in a 2D viewport. We finally crop the
corresponding region and rescale it to obtain the target virtual view (right).
Colors and object masks have been used for illustrative purposes only.

deriving from those boxes but at the same time we will not penalize potential
predictions intersecting with this area. Our goal is to let the network focus ex-
clusively on objects within the depth resolution range, because objects out of
this range will be captured by moving the 3D viewport as we will discuss below
when we illustrate the inference strategy. Every other ground-truth box that is
still valid will be shifted along the Z-axis by −Zv, because we want the network
to predict a depth value that is relative to the 3D viewport position. This is a
key element to enforce generalization across depth. In addition, we let a small
share of the nv virtual images to be generated by 3D viewports randomly posi-
tioned in a way that the corresponding virtual image is completely contained in
the original image. Finally, we have also experimented a class-uniform sampling
strategy which allows to get an even number of virtual images for each class that
is present in the original image.

Inference. At inference time we would ideally put the 3D viewport in front of
potential objects in order to have the best view for the detector. Clearly, we
do not know in advance where the objects are, but we can exploit the special
training procedure that we have used to build the model and perform a complete
sweep over the input image by taking depth steps of Zres

2 and considering objects
lying close to the ground, i.e. we set Yv = 0. An illustration of the procedure
in given in Fig 5. Since we have trained the network to be able to predict at
distances that are twice the depth step, we are reasonably confident that we are
not missing objects, in the sense that each object will be covered by at least a
virtual image. Also, due to the convolutional nature of the architecture we adjust
the width of the virtual image in a way to cover the entire extent of the input
image. By doing so we have virtual images that become wider as we increase
the depth, following the rule wv = hv

Hv

Zv

fy
W, where W is the width of the input

image. We finally perform NMS over detections that have been generated from
the same virtual image.

8 A. Simonelli et al.

Camera

}

Top View

Input RGB Image

 Single-Stage
3D Detector

Camera Parameters

Output 3D Boxes
Detection

Distance Specific Viewports Distance Specific Virtual Views

Depth Resolution

Fig. 5: Inference pipeline. Given the input image, camera parameters and Zres

we create a series of 3D viewports which we place every Zres

2 meters along the Z
axis. We then project these viewports onto the image (as done during training,
illustrated in Fig. 4), crop and rescale the resulting regions to obtain distance-
specific virtual views. We finally use these views to perform the 3D detection.
Colors and object masks have been used for illustrative purposes only.

5 Proposed Single-Stage Architecture

We propose a single-stage, fully-convolutional architecture for 3D object detec-
tion (MoVi-3D), consisting of a small backbone to extract features and a simple
3D detection head providing dense predictions of 3D bounding boxes. Details
about its components are given below.

5.1 Backbone

The backbone we adopt is a ResNet34 [6] with a Feature Pyramid Network
(FPN) [14] module on top. The structure of the FPN network differs from the
original paper [15] for we implement only 2 scales, connected to the output of
modules conv4 and conv5 of ResNet34, corresponding to downsampling factors
of ×16 and ×32, respectively. Moreover, our implementation of ResNet34 differs
from the original one by replacing BatchNorm+ReLU layers with synchronized
InPlaceABN (iABNsync) activated with LeakyReLU with negative slope 0.01
as proposed in [29]. This change allows to free up a significant amount of GPU
memory, which can be exploited to scale up the batch size and, therefore, improve
the quality of the computed gradients. In Fig. 6 we depict our backbone, where
white rectangles in the FPN module denote 1 × 1 or 3 × 3 convolution layers
with 256 output channels, each followed by iABNsync.

Inputs. The backbone takes in input an RGB image x.

Outputs. The backbone provides 2 output tensors, namely {f1, f2}, correspond-
ing to the 2 different scales of the FPN network with downsampling factors of
×16 and ×32, each with 256 feature channels (see, Fig. 6).

5.2 3D Detection Head

We build the 3D detection head by modifying the single-stage 2D detector im-
plemented in RetinaNet [15]. We apply the detection module independently to
each output fi of our backbone, thus operating at a different scale of the FPN as
described above. The detection modules share the same parameters and provide
dense 3D bounding boxes predictions. In addition, we let the module regress

Towards Generalization Across Depth for Monocular 3D Object Detection 9

1×1
256

3×3
256

3×3
256

FPN
ResNet34

×16

×32

×16

×32
1×1
256

conv1,2,3 conv4 conv5

Fig. 6: Our architecture. The backbone consists of a ResNet34 with a reduced
FPN module covering only 2 scales at ×16 and ×32 downsampling factors. The
3D detection head is run independently on f1 and f2. Rectangles in FPN and
the 3D detection head denote convolutions followed by iABNsync. See Sec. 5.2
for a description of the different outputs.

2D bounding boxes similar to [32,1], but in contrast to those works, we will not
use the predicted 2D bounding boxes but rather consider this as a regularizing
side task. Akin to RetinaNet, this module makes use of so-called anchors, which
implicitly provide some pre-defined 2D bounding boxes that the network can
modify. The number of anchors per spatial location is given by na. Fig. 6 shows
the architecture of our 3D detection head. It consists of two parallel branches,
the top one devoted to providing confidences about the predicted 2D and 3D
bounding boxes, while the bottom one is devoted to regressing the actual bound-
ing boxes. White rectangles denote 3× 3 convolutions with 128 output channels
followed by iABNsync. More details about the input and outputs of this module
are given below, by following the notation adopted in [32].

Inputs. The 3D detection head takes fi, i ∈ {1, 2}, i.e. an output tensor of our
backbone, as input. Each tensor fi has a spatial resolution of wi × hi.
Outputs. The detection head outputs a 2D bounding box and nc 3D bounding
boxes (with confidences) for each anchor a and spatial cell g of the wi × hi grid
of fi. Each anchor a provides a reference size (wa, ha) for the 2D bounding box.
The 2D bounding box is given in terms of θ2D = (δu, δv, δw, δh) and ζ2D =
(ζ12D, . . . , ζ

nc
2D) from which we can derive

– pc2D = (1 + e−ζ
c
2D)−1, i.e. the probability that the 2D bbox belongs to class c,

– (ub, vb) = (ug+δuwa, vg+δvha), i.e. the bounding box’s center, where (ug, vg)
are the image coordinates of cell g, and

– (wb, hb) = (wae
δw , hae

δh), i.e. the size of the bounding box.
In addition to the 2D bounding box the head returns, for each class 1 ≤ c ≤ nc,
a 3D bounding box in terms of θ3D = (∆u, ∆v, δz, δW , δH , δD, rx, rz) and ζ3D
(we omitted the superscript c). Indeed, from those outputs we can compute
– pc3D|2D = (1 + e−ζ3D)−1, i.e. the per-class 3D bbx confidence,

– c = (ub +∆u, vb +∆v), i.e. the 3D bbox center projected on the image plane,
– z = µcz + σczδz, i.e. the depth of the bounding box center, where µcz and σcz

are class- and Zres-specific depth mean and standard deviation,
– s = (W c

0 e
δW , Hc

0e
δH , Dc

0e
δD), i.e. the 3D bounding box dimensions, where

(W c
0 , H

c
0 , D

c
0) is a reference size for 3D bounding boxes belonging to class c,

– α = atan2(rx, rz) is the rotation angle on the XZ-plane with respect to an
allocentric coordinate system.

The actual confidence of each 3D bounding box is computed by combining the
2D and 3D bounding box probabilities into pc3D = pc3D|2Dp

c
2D.

10 A. Simonelli et al.

Losses. The losses we employ to regress the 2D bounding boxes and to learn
the 2D class-wise confidence are inherited from the RetinaNet 2D detector [15].
Also the logic for the assignment of ground-truth boxes to anchors is taken
from the same work, but we use it in a slightly different way, since we have 3D
bounding boxes as ground-truth. The idea is to extract the 2D bounding box
from the projected 3D bounding box and use this to guide the assignment of the
ground-truth box to anchors. As for the losses pertaining to the 3D detection
part, we exploit the lifting transformation combined with the loss disentangling
strategy as proposed in [32]. Indeed, the lifting transformation allows to sidestep
the issue of finding a proper way of balancing losses for the different outputs of
the network, which inherently operate at different scales, by optimizing a single
loss directly at the 3D bounding box level. However, this loss entangles the
network’s outputs in a way that renders the training dynamics unstable, thus
harming the learning process. Nonetheless, this can be overcome by employing
the disentangling transformation [32]. We refer to the latter work for details.

6 Experiments

In this section we validate our contributions on the KITTI3D dataset [5]. Af-
ter providing some details about the implementation of our method, we give a
description of the dataset and its metrics. Then, we show the results obtained
comparing our single-stage architecture MoVi-3D against state-of-the-art meth-
ods on the KITTI3D benchmark. Finally, to better highlight the importance of
our novel technical contribution, we perform an in-depth ablation study.

6.1 Implementation details

In this section we provide the details about the implementation of the virtual
views as well as relevant information about the optimization.

Virtual Views. We implement our approach using a parametrization that pro-
vides good performances without compromising the overall speed of the method.
During training we generate a total of nv = 8 virtual views per training image,
by using a class-uniform, ground-truth-oriented sampling strategy with proba-
bility pv = 0.7, random otherwise (see Sec. 4). We set the depth resolution Zres

to 5m. During inference we limit the search space along depth to [4.5m, 45m].
We set the dimensions of all the generated views to have height hv = 100 pixels
and width wv = 331 pixels. We set the depth statistics as µz = 3m and σz = 1m.

Optimization. Our network is optimized in an end-to-end manner and in a
single training phase, not requiring any multi-step or warm-up procedures. We
used SGD with a learning rate set at 0.2 and a weight decay of 0.0001 to all
parameters but scale and biases of iABN. Following [32], we did not optimize
the parameters in conv1 and conv2 of the ResNet34. Due to the fairly reduced
resolution of the virtual views, we are able to train with a batch size of 2048
on 4 NVIDIA V-100 GPUs for 20k iterations, decreasing the learning rate by
a factor of 0.1 at 16k and 18k iterations. No form of augmentation (e.g. voting
using multi-scale, horizontal flipping, etc.) has been applied during inference.

Towards Generalization Across Depth for Monocular 3D Object Detection 11

3D Detection Head. We adopt 18 anchors with six aspect ratios { 1
3 , 1

2 , 3
4 ,

1, 2, 3} and three different scales {2si2
j
3 : j ∈ 0, 1, 2}, where si is the down-

sampling factor of the FPN level fi. Each anchor is considered positive if its
IoU with a ground truth object is greater than 0.5. To account for the presence
of objects of different categories and therefore of fairly different 3D extent, we
create class-wise reference anchors. Each reference anchor has been obtained
by observing the dataset statistics of the training set. We define the reference
Car size as W0 = 1.63m, H0 = 1.53m, D0 = 3.84m, the Pedestrian reference
as W0 = 0.63m, H0 = 1.77m, D0 = 0.83m and the Cyclist reference as W0 =
0.57m, H0 = 1.73m, D0 = 1.78m.

Losses. We used a weight of 1 for the 2D confidence loss and for the 3D regression
loss, while we set at 0.5 the weight of the 2D regression and 3D confidence loss.
The Huber parameter is set to δH = 3.0 and the 3D confidence temperature to
T = 1 as done in [32].

6.2 Dataset and Experimental Protocol

Dataset. The KITTI3D dataset is arguably the most influential benchmark
for monocular 3D object detection. It consists of 7481 training and 7518 test
images. Since the dataset does not provide an official validation set, it is common
practice to split the training data into 3712 training and 3769 validation images
as proposed in [3] and then report validation results. For this reason it is also
mandatory not to limit the analysis of the results to the validation set but
instead to provide results on the official test set obtained via the KITTI3D
benchmark evaluation server4. The dataset annotations are provided in terms
of 3D bounding boxes, each one characterized by a category and a difficulty.
The possible object categories are Car, Pedestrian and Cyclist, while the object
difficulties are chosen among Easy, Moderate and Hard depending on the object
distance, occlusion and truncation. It is also relevant to note that the number
of per-class annotations is profoundly different, causing the dataset to have a
fairly high class imbalance. On a total of 28,8k annotations, 23.0k (79.8%) are
Car objects, while 4.3k (15.0%) are Pedestrian and only 1.5k (5.2%) are Cyclist.

Experimental Protocol. In order to provide a fair comparison, we followed the
experimental protocol of M3D-RPN [1] and SS3D [8], i.e. the only other avail-
able multi-class, monocular, RGB-only methods. To this end, we show results
on all the KITTI3D classes obtained by means of a single multi-class model.
For completeness we also report results of other methods (e.g. single-class or
RBG+LiDAR), but we remark that a fair comparison is only possible with [1,8].

Evaluation Protocol. Our results follow the Official KITTI3D protocol 4. In
particular, we report scores in terms of the official 3D Average Precision (AP)
metric and Bird’s Eye View (BEV) AP metric. These scores have been com-
puted with the official class-specific thresholds which are 0.7 for Car and 0.5 for
Pedestrian and Cyclist. Recently, there has been a modification in the KITTI3D

4Official KITTI3D benchmark: www.cvlibs.net/datasets/kitti/eval_object.

php?obj_benchmark=3d

www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

12 A. Simonelli et al.

Table 1: Test set SOTA results on Car (0.7 IoU threshold)

Training 3D detection Bird’s eye view
Method classes data Easy Moderate Hard Easy Moderate Hard

OFTNet [28] single RGB 1.61 1.32 1.00 7.16 5.69 4.61
FQNet [17] single RGB 2.77 1.51 1.01 5.40 3.23 2.46
ROI-10D [20] single RGB+Depth 4.32 2.02 1.46 9.78 4.91 3.74
GS3D [12] single RGB 4.47 2.90 2.47 8.41 6.08 4.94
MonoGRNet [24] single RGB 9.61 5.74 4.25 18.19 11.17 8.73
MonoDIS [32] single RGB 10.37 7.94 6.40 17.23 13.19 11.12
MonoPSR [9] single RGB+LiDAR 10.76 7.25 5.85 18.33 12.58 9.91
SS3D [8] multi RGB 10.78 7.68 6.51 16.33 11.52 9.93
SMOKE [19] single RGB 14.03 9.76 7.84 20.83 14.49 12.75
M3D-RPN [1] multi RGB 14.76 9.71 7.42 21.02 13.67 10.23
Ours multi RGB 15.19 10.90 9.26 22.76 17.03 14.85

Table 2: Test set SOTA results on Pedestrian and Cyclist (0.5 IoU threshold)

Pedestrian Cyclist
Training 3D Detection Bird’s eye view 3D Detection Bird’s eye view

Method classes data Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

OFTNet [28] single RGB 0.63 0.36 0.35 1.28 0.81 0.51 0.14 0.06 0.07 0.36 0.16 0.15
SS3D [8] multi RGB 2.31 1.78 1.48 2.48 2.09 1.61 2.80 1.45 1.35 3.45 1.89 1.44
M3D-RPN [1] multi RGB 4.92 3.48 2.94 5.65 4.05 3.29 0.94 0.65 0.47 1.25 0.81 0.78
MonoPSR [9] single RGB+LiDAR 6.12 4.00 3.30 7.24 4.56 4.11 8.37 4.74 3.68 9.87 5.78 4.57
Ours multi RGB 8.99 5.44 4.57 10.08 6.29 5.37 1.08 0.63 0.70 1.45 0.91 0.93

metric computation. The previous AP |R11 metric, which has been demonstrated
to provide biased comparisons [32], has been deprecated in favour of the AP |R40 .
Due to this fact, we invite to refer only to AP |R40

and to disregard any score
computed with AP |R11

. Even if a method was published before the new metric
has been introduced, its updated AP |R40

test scores should be visible online 4.
The availability of validation scores is instead dependent on the publication date
and to the author’s willingness to provide results with the new unbiased metric.

6.3 3D Detection

In this section we show the results of our approach, providing a comparison with
state-of-the-art 3D object detection methods. As previously stated in Sec. 6.2,
we would like to remind that some of the reported methods do not adopt the
same experimental protocol as ours. Furthermore, due to the formerly men-
tioned redefinition of the metric computation, the performances reported by
some previous methods which used a potentially biased metric cannot be taken
into consideration. For this reason we focus our attention on the performances
on the test split, reporting official results computed with the updated metric.

Performances on class Car. In Tab. 1 we show the results on class Car of
the KITTI3D test set. It is evident that our approach outperforms all baselines
on both 3D and BEV metrics, often by a large margin. In particular, our method
achieves better performances compared to single class models (e.g. MonoDIS [32],
MonoGRNet [24], SMOKE [19]) and to methods which use LiDAR information
during training (MonoPSR [9]). Our method also outperforms the other single-

Towards Generalization Across Depth for Monocular 3D Object Detection 13

Table 3: Validation set results on all KITTI3D classes. (0.7 IoU threshold on Car,
0.5 on Pedestrian and Cyclist). V = Virtual Views, B = Bin-based estimation

Car Pedestrian Cyclist
3D Detection Bird’s eye view 3D Detection Bird’s eye view 3D Detection Bird’s eye view

Method Zres Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MonoDIS [32] – 11.06 7.60 6.37 18.45 12.58 10.66 3.20 2.28 1.71 4.04 3.19 2.45 1.52 0.73 0.71 1.87 1.00 0.94

MonoDIS+V 5m 13.40 10.89 9.67 21.90 17.38 15.71 4.98 3.31 3.06 6.83 4.33 3.38 2.09 1.07 1.00 2.70 1.42 1.31
MonoDIS+B 5m 7.30 5.34 4.25 12.83 8.77 7.21 3.96 3.10 2.49 4.87 3.65 3.01 0.44 0.31 0.26 0.82 0.39 0.27
MonoDIS+B 10m 11.64 8.36 7.25 19.07 12.98 11.39 3.37 3.13 2.53 4.56 4.21 3.44 2.76 1.80 1.72 3.39 2.20 2.18

MoVi-3D 5m 14.28 11.13 9.68 22.36 17.87 15.73 7.86 5.52 4.42 9.25 6.63 5.06 2.63 1.27 1.13 3.10 1.57 1.30
MoVi-3D 10m 11.58 9.54 8.54 17.98 15.16 13.98 1.82 1.27 0.94 2.38 1.78 1.34 1.08 0.51 0.51 1.84 0.97 0.89
MoVi-3D 20m 7.68 6.18 5.56 13.35 11.11 10.22 1.55 0.97 0.83 1.97 1.39 1.05 0.25 0.10 0.10 0.36 0.17 0.17

Table 4: Ablation results on Car obtained on different distance ranges.

train val 3D detection Bird’s eye view
Method range range Easy Mod. Hard Easy Mod. Hard

MonoDIS [32] far near 0.2 0.1 0.1 0.2 0.1 0.1
MoVi-3D far near 4.0 1.9 1.7 5.5 2.7 2.4

MonoDIS [32] near far 0.2 0.1 0.1 0.2 0.2 0.1
MoVi-3D near far 3.3 1.4 1.7 4.2 1.9 2.3

MonoDIS [32] near+far middle 0.6 0.4 0.3 0.7 0.5 0.4
MoVi-3D near+far middle 19.2 10.6 8.8 22.9 12.8 10.4

stage, multi-class competitors (M3D-RPN [1], SS3D [8]). This is especially re-
markable considering the fact that M3D-RPN relies on a fairly deeper backbone
(DenseNet-121) and, similarly to SS3D, it also uses a post-optimization process
and a multi-stage training. It is also worth noting that our method achieves the
largest improvements on Moderate and Hard sets where object are in general
more distant and occluded: on the 3D AP metric we improve with respect to
the best competing method by +12.3% and +24.8% respectively while for the
BEV AP metric improves by +24.6% and +33.5%, respectively.

Performances on the other KITTI3D classes. In Tab. 2 we report the per-
formances obtained on the classes Pedestrian and Cyclist on the KITTI3D test
set. On the class Pedestrian our approach outperforms all the competing meth-
ods on all levels of difficulty considering both 3D AP and BEV AP. Remarkably,
we also achieve better performance than MonoPSR [9] which exploits LiDAR at
training time, in addition to RGB images. The proposed method also outper-
forms the multi-class models in [1,8]. On Cyclist our method achieves modest
improvements with respect to M3D-RPN [1], but it does not achieve better per-
formances than SS3D [8] and MonoPSR [9]. However, we would like to remark
that MonoPSR [9] exploits additional source of information (i.e. LiDAR) be-
sides RGB images, while SS3D [8] underperforms on Car and Pedestrian which,
as described in Sec. 6.2, are the two most represented classes.

Ablation studies. In Tab. 3,4 we provide three different ablation studies. First,
in 1st-4th row of Tab. 3 we put our proposed virtual views in comparison with a
bin-based distance estimation approach. To do so, we took a common baseline,
MonoDIS [32], and modified it in order to work with both virtual views and bin-
based estimation. The 1st row of Tab. 3 shows the baseline results of MonoDIS
as reported in [32]. In the 2nd row we report the scores obtained by applying

14 A. Simonelli et al.

our virtual views to MonoDIS (MonoDIS+V). In the 3rd-4th rows we show the
results obtained with MonoDIS with the bin-based approach (MonoDIS+B).
For these last experiments we kept the full-resolution image as input, divided
the distance range into Zres-spaced bins, assigned each object to a specific bin,
learned this assignment as a classification task and finally applied a regression-
based refinement. By experimenting with different Zres values, we found that
MonoDIS+V performs best with Zres = 5m while MonoDIS+B performed best
with Zres = 10m. With the only exception of the class Cyclist, the MonoDIS+V
outperforms MonoDIS+B in both 3D and BEV AP. Second, in the 3rd-6th rows
of Tab. 3 we show the results of another ablation study in which we focus on
different possible Zres configurations of our proposed MoVi-3D detector. In this
regard, we show the performances by setting Zres to 5m (3rd row), 10m (4th)
and 20m (5th). Among the different settings, the depth resolution Zres = 5m
outperforms the others by a clear margin. Finally, in Tab. 4 we conduct another
ablation experiment in order to measure the generalization capabilities of our
virtual views. We create different versions of the KITTI3D train/val splits, each
one of them containing objects included into a specific depth range. In particular,
we define a far/near train/val split, where the depth of the objects in the training
split is in [0m, 20m] whereas the depth of the objects included into the validation
split is in [20m, 50m]. We then define a near/far train/val split by reversing the
previous splits, as well as a third train/val split regarded as near+far/middle
where the training split includes object with depth in [0m,10m] + [20m, 40m]
while the validation is in [10m, 20m]. We compare the results on these three
train/val splits with the MonoDIS [32] baseline, decreasing the AP IoU threshold
to 0.5 in order to better comprehend the analysis. By analyzing the results in
Tab. 4 it is clear that our method generalizes better across ranges, achieving
performances which are one order of magnitude superior to the baseline.

Inference Time. Inference time plays a key role for the application of monocu-
lar 3D object detection methods. Our method demonstrates to achieve real-time
performances reaching, under the best configuration with Zres = 5m, an aver-
age inference time of 45ms. As expected, the inference time is influenced by the
number of views. We found the inference time to be inversely proportional to
the discretization of the distance range Zres. In fact, we observe that inference
time goes from 13ms with Zres = 20m, to 25ms (10m), 45ms (5m).

Qualitative results. We provide some qualitative results in Fig. 7. We also
provide full-size qualitative results in Fig. 8,9.

7 Conclusions

We introduced new training and inference schemes for 3D object detection from
single RGB images, designed with the purpose of injecting depth invariance
into the model. At training time, our method generates virtual views that are
positioned within a small neighborhood of the objects to be detected. This yields
to learn a model that is supposed to detect objects within a small depth range
independently from where the object was originally positioned in the scene. At
inference time, we apply the trained model to multiple virtual views that span

Towards Generalization Across Depth for Monocular 3D Object Detection 15

Fig. 7: Qualitative results obtained with MoVi-3D on KITTI3D.

the entire range of depths at a resolution that relates to the depth tolerance
considered at training time. Due to the gained depth invariance, we also designed
a novel, lightweight, single-stage deep architecture for 3D object detector that
does not make explicit use of regressed 2D bounding boxes at inference time, as
opposite to many previous methods. Overall, our approach achieves state-of-the-
art results on the KITTI3D benchmark. Future research will focus on devising
data-driven methods to adaptively generate the best views at inference time.

References

1. Brazil, G., Liu, X.: M3D-RPN: Monocular 3d region proposal network for object
detection. In: ICCV. pp. 9287–9296 (2019) 2, 3, 9, 11, 12, 13

2. Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C., Chateau, T.: Deep manta: A
coarse-to-fine many-task network for joint 2d and 3d vehicle analysis from monoc-
ular image. In: CVPR (July 2017) 4

3. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang,
C., Zhang, Z.: Mxnet: A flexible and efficient machine learning library for hetero-
geneous distributed systems. CoRR abs/1512.01274 (2015) 11

4. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3d
object detection for autonomous driving. In: CVPR (2016) 3

5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti
vision benchmark suite. In: CVPR (2012) 2, 10

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015) 8

7. He, T., Soatto, S.: Mono3d++: Monocular 3d vehicle detection with two-scale 3d
hypotheses and task priors. CoRR abs/1901.03446 (2019) 4

8. Jorgensen, E., Zach, C., Kahl, F.: Monocular 3d object detection and box fitting
trained end-to-end using intersection-over-union loss. In: CVPR (2019) 3, 11, 12,
13

9. Ku, J., Pon, A.D., Waslander, S.L.: Monocular 3d object detection leveraging ac-
curate proposals and shape reconstruction. In: CVPR (2019) 2, 3, 12, 13

10. Kundu, A., Li, Y., Rehg, J.M.: 3D-RCNN: Instance-level 3d object reconstruction
via render-and-compare. In: (CVPR) (June 2018) 4

11. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: ECCV
(September 2018) 1

12. Li, B., Ouyang, W., Sheng, L., Zeng, X., Wang, X.: Gs3d: An efficient 3d object
detection framework for autonomous driving. In: CVPR (2019) 3, 12

13. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion
for 3d object detection. In: CVPR (2019) 1

16 A. Simonelli et al.

14. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. CoRR abs/1612.03144 (2016) 8

15. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object
detection. CoRR abs/1708.02002 (2017) 1, 8, 10

16. Liu, L., Ouyang, W., Wang, X., Fieguth, P.W., Chen, J., Liu, X., Pietikäinen,
M.: Deep learning for generic object detection: A survey. CoRR abs/1809.02165
(2018) 1

17. Liu, L., Lu, J., Xu, C., Tian, Q., Zhou, J.: Deep fitting degree scoring network for
monocular 3d object detection. CoRR abs/1904.12681 (2019) 3, 12

18. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: ECCV (2016) 1

19. Liu, Z., Wu, Z., Tth, R.: Smoke: Single-stage monocular 3d object detection via
keypoint estimation. CoRR abs/2002.10111 (2020) 3, 12

20. Manhardt, F., Kehl, W., Gaidon, A.: Roi-10d: Monocular lifting of 2d detection to
6d pose and metric shape. In: CVPR (2019) 3, 4, 12

21. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3d bounding box estimation
using deep learning and geometry. In: CVPR (July 2017) 3

22. Murthy, K.J., Krishna, S.G., Chhaya, F., Krishna, M.K.: Reconstructing vehicles
from a single image: Shape priors for road scene understanding. In: ICRA (2017)
4

23. Pillai, S., Ambrus, R., Gaidon, A.: Superdepth: Self-supervised, super-resolved
monocular depth estimation. In: ICRA (2019) 4

24. Qin, Z., Wang, J., Lu, Y.: Monogrnet: A geometric reasoning network for 3d object
localization. In: (AAAI) (2019) 3, 12

25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: CVPR (June 2016) 1

26. Redmon, J., Farhadi, A.: Yolo9000: Better, faster, stronger. In: CVPR (2017) 1
27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object

detection with region proposal networks. In: NIPS (2015) 1
28. Roddick, T., Kendall, A., Cipolla, R.: Orthographic feature transform for monoc-

ular 3d object detection. CoRR abs/1811.08188 (2018) 3, 12
29. Rota Bulò, S., Porzi, L., Kontschieder, P.: In-place activated batchnorm for

memory-optimized training of DNNs. In: CVPR (2018) 8
30. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection

from point cloud. In: CVPR (2019) 1
31. Shin, K., Kwon, Y.P., Tomizuka, M.: Roarnet: A robust 3d object detection based

on region approximation refinement. CoRR abs/1811.03818 (2018) 1
32. Simonelli, A., Rota Bulò, S., Porzi, L., López-Antequera, M., Kontschieder, P.:

Disentangling monocular 3d object detection. In: ICCV (2019) 2, 3, 5, 9, 10, 11,
12, 13, 14

33. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.:
Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection
for autonomous driving. In: CVPR (2019) 4

34. Wang, Z., Jia, K.: Frustum convnet: Sliding frustums to aggregate local point-wise
features for amodal 3d object detection. CoRR abs/1903.01864 (2019) 1

35. You, Y., Wang, Y., Chao, W.L., Garg, D., Pleiss, G., Hariharan, B., Campbell,
M., Weinberger, K.Q.: Pseudo-lidar++: Accurate depth for 3d object detection in
autonomous driving. CoRR abs/1906.06310 (2019) 4

36. Zia, M.Z., Stark, M., Schindler, K.: Are cars just 3d boxes? Jointly estimating the
3d shape of multiple objects. In: CVPR (2014) 4

Towards Generalization Across Depth for Monocular 3D Object Detection 17

Fig. 8: Example results of our MoVi-3D model on KITTI3D validation images.

18 A. Simonelli et al.

Fig. 9: Further example results of our MoVi-3D model on KITTI3D validation
images.

