Abstract
This study proposes a privacy-preserving Visual SLAM framework for estimating camera poses and performing bundle adjustment with mixed line and point clouds in real time. Previous studies have proposed localization methods to estimate a camera pose using a line-cloud map for a single image or a reconstructed point cloud. These methods offer a scene privacy protection against the inversion attacks by converting a point cloud to a line cloud, which reconstruct the scene images from the point cloud. However, they are not directly applicable to a video sequence because they do not address computational efficiency. This is a critical issue to solve for estimating camera poses and performing bundle adjustment with mixed line and point clouds in real time. Moreover, there has been no study on a method to optimize a line-cloud map of a server with a point cloud reconstructed from a client video because any observation points on the image coordinates are not available to prevent the inversion attacks, namely the reversibility of the 3D lines. The experimental results with synthetic and real data show that our Visual SLAM framework achieves the intended privacy-preserving formation and real-time performance using a line-cloud map.
M. Shibuya, S. Sumikura and K. Sakurada—The authors assert equal contribution and joint first authorship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., et al.: Building Rome in a day. Commun. ACM 54(10), 105–112 (2011)
Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: European Conference on Computer Vision (ECCV), pp. 214–227 (2012)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)
Cui, H., Gao, X., Shen, S., Hu, Z.: HSfM: hybrid structure-from-motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1212–1221 (2017)
Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 29(6), 1052–1067 (2007)
DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 337–349 (2017)
Dong, R., Fremont, V., Lacroix, S., Fantoni, I., Changan, L.: Line-based monocular graph SLAM. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 494–500 (2017)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Conference on Robot Learning (CoRL), pp. 1–16 (2017)
Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. (MVA) 9(5–6), 272–290 (1997)
Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(3), 611–625 (2018)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Galvez-Lopez, D., Tardos, J.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. (TRO) 28(5), 1188–1197 (2012)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)
Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Trans. Intell. Transp. Syst. (ITS) Mag. 2, 31–43 (2010)
Haralick, R.M., Lee, C.N., Ottenburg, K., Nölle, M.: Analysis and solutions of the three point perspective pose estimation problem. In: International Conference on Computer Vision and Pattern Recognition (CVPR), vol. 91, pp. 592–598 (1991)
Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A (JOSA A) 4, 629–642 (1987)
Huizhong, Z., Danping, Z., Pei, L., Ying, R., Liu, P., Wenxian, Y.: StructSLAM: visual SLAM with building structure lines. IEEE Trans. Veh. Technol. (TVT) 64(4), 1364–1375 (2015)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), pp. 225–234 (2007)
Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613 (2011)
Lourakis, M.I.A., Argyros, A.A.: SBA: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. (TOMS) 36(1) (2009)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60, 91–118 (2004)
Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. (TRO) 31(5), 1147–1163 (2015)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. (TRO) 33(5), 1255–1262 (2017)
Newcombe, R., Lovegrove, S., Davison, A.: DTAM: dense tracking and mapping in real-time. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327 (2011)
Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting structure from motion reconstructions (2019)
Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: PL-SLAM: real-time monocular visual SLAM with points and lines. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4503–4508 (2017)
Quan, L., Lan, Z.: Linear N-point camera pose determination. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 21(8), 774–780 (1999)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)
Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2D-to-3D matching. In: IEEE International Conference on Computer Vision (ICCV), pp. 667–674 (2011)
Schlegel, D., Grisetti, G.: HBST: a hamming distance embedding binary search tree for feature-based visual place recognition. IEEE Robot. Autom. Lett. (RAL) 3(4), 3741–3748 (2018)
Speciale, P., Schonberger, J.L., Kang, S.B., Sinha, S.N., Pollefeys, M.: Privacy preserving image-based localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5493–5503 (2019)
Speciale, P., Schonberger, J.L., Sinha, S.N., Pollefeys, M.: Privacy preserving image queries for camera localization. In: IEEE International Conference on Computer Vision (ICCV), pp. 1486–1496 (2019)
Strasdat, H., Montiel, J., Davison, A.J.: Scale drift-aware large scale monocular SLAM. Robot.: Sci. Syst. VI 2(3), 7 (2010)
Sumikura, S., Shibuya, M., Sakurada, K.: OpenVSLAM: a versatile visual SLAM framework. In: ACM International Conference on Multimedia (ACMMM), pp. 2292–2295. ACM (2019)
Sweeney, C., Fragoso, V., Höllerer, T., Turk, M.: gDLS: a scalable solution to the generalized pose and scale problem. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 16–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_2
Tang, J., Ericson, L., Folkesson, J., Jensfelt, P.: GCNv2: efficient correspondence prediction for real-time SLAM. IEEE Robot. Autom. Lett. (RAL) 4(4), 3505–3512 (2019)
Tateno, K., Tombari, F., Laina, I., Navab, N.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6243–6252 (2017)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 4, 376–380 (1991)
Wu, C., Agarwal, S., Curless, B., Seitz, S.: Multicore bundle adjustment. In: International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3057–3064 (2011)
Yang, N., Wang, R., Stckler, J., Cremers, D.: Deep virtual stereo odometry: leveraging deep depth prediction for monocular direct sparse odometry. In: European Conference on Computer Vision (ECCV), pp. 835–852 (2018)
Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28
Zhou, H., Ummenhofer, B., Brox, T.: DeepTAM: deep tracking and mapping. In: European Conference on Computer Vision (ECCV), pp. 851–868 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 42922 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Shibuya, M., Sumikura, S., Sakurada, K. (2020). Privacy Preserving Visual SLAM. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12367. Springer, Cham. https://doi.org/10.1007/978-3-030-58542-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-58542-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58541-9
Online ISBN: 978-3-030-58542-6
eBook Packages: Computer ScienceComputer Science (R0)