Skip to main content

Sequential Convolution and Runge-Kutta Residual Architecture for Image Compressed Sensing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

In recent years, Deep Neural Networks (DNN) have empowered Compressed Sensing (CS) substantially and have achieved high reconstruction quality and speed far exceeding traditional CS methods. However, there are still lots of issues to be further explored before it can be practical enough. There are mainly two challenging problems in CS, one is to achieve efficient data sampling, and the other is to reconstruct images with high-quality. To address the two challenges, this paper proposes a novel Runge-Kutta Convolutional Compressed Sensing Network (RK-CCSNet). In the sensing stage, RK-CCSNet applies Sequential Convolutional Module (SCM) to gradually compact measurements through a series of convolution filters. In the reconstruction stage, RK-CCSNet establishes a novel Learned Runge-Kutta Block (LRKB) based on the famous Runge-Kutta methods, reformulating the process of image reconstruction as a discrete dynamical system. Finally, the implementation of RK-CCSNet achieves state-of-the-art performance on influential benchmarks with respect to prestigious baselines, and all the codes are available at https://github.com/rkteddy/RK-CCSNet.

This research is supported by National Natural Science Foundation of China grant No. 61772232.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bsds500.

  2. 2.

    http://vllab.ucmerced.edu/wlai24/LapSRN/.

References

  1. Arbelaez, P., Maire, M., Fowlkes, C.C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. August, Y., Vachman, C., Rivenson, Y., Stern, A.: Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains. Appl. Opt. 52(10), D46–D54 (2013)

    Article  Google Scholar 

  3. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C.R. Math. 346(9–10), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  4. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  5. Donoho, D.L., et al.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  6. Du, J., Xie, X., Wang, C., Shi, G., Xu, X., Wang, Y.: Fully convolutional measurement network for compressive sensing image reconstruction. Neurocomputing 328, 105–112 (2019)

    Article  Google Scholar 

  7. Duarte, M.F., et al.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  MathSciNet  Google Scholar 

  8. Weinan, E.: A proposal on machine learning via dynamical systems. Commun. Math. Stat. 5(1), 1–11 (2017). https://doi.org/10.1007/s40304-017-0103-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Gehm, M., John, R., Brady, D., Willett, R., Schulz, T.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14013–14027 (2007)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 1026–1034. IEEE Computer Society (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  13. Hitomi, Y., Gu, J., Gupta, M., Mitsunaga, T., Nayar, S.K.: Video from a single coded exposure photograph using a learned over-complete dictionary. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.V. (eds.) IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, 6–13 November 2011, pp. 287–294. IEEE Computer Society (2011)

    Google Scholar 

  14. Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23–26 August 2010, pp. 2366–2369 (2010)

    Google Scholar 

  15. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 2261–2269. IEEE Computer Society (2017)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  17. Kulkarni, K., Lohit, S., Turaga, P.K., Kerviche, R., Ashok, A.: ReconNet: non-iterative reconstruction of images from compressively sensed measurements. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 449–458. IEEE Computer Society (2016)

    Google Scholar 

  18. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, New York (1991)

    MATH  Google Scholar 

  19. Li, C.: An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing. Master’s thesis, Rice University (2010)

    Google Scholar 

  20. Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 3282–3291. PMLR (2018)

    Google Scholar 

  21. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72 (2008)

    Article  Google Scholar 

  22. Mousavi, A., Baraniuk, R.G.: Learning to invert: signal recovery via deep convolutional networks. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, 5–9 March 2017, pp. 2272–2276. IEEE (2017)

    Google Scholar 

  23. Mousavi, A., Dasarathy, G., Baraniuk, R.G.: A data-driven and distributed approach to sparse signal representation and recovery. In: International Conference on Learning Representations (2018)

    Google Scholar 

  24. Mousavi, A., Patel, A.B., Baraniuk, R.G.: A deep learning approach to structured signal recovery. In: 53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015, Allerton Park & Retreat Center, Monticello, IL, USA, 29 September–2 October 2015, pp. 1336–1343. IEEE (2015)

    Google Scholar 

  25. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  26. Sauer, T.: Numerical Analysis, 2nd edn. Addison-Wesley Publishing Company, USA (2011)

    Google Scholar 

  27. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  28. Shi, W., Jiang, F., Liu, S., Zhao, D.: Scalable convolutional neural network for image compressed sensing. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 12290–12299. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  29. Shi, W., Jiang, F., Liu, S., Zhao, D.: Image compressed sensing using convolutional neural network. IEEE Trans. Image Process. 29, 375–388 (2020)

    Article  MathSciNet  Google Scholar 

  30. Shi, W., Jiang, F., Zhang, S., Zhao, D.: Deep networks for compressed image sensing. In: 2017 IEEE International Conference on Multimedia and Expo, ICME 2017, Hong Kong, China, 10–14 July 2017, pp. 877–882. IEEE Computer Society (2017)

    Google Scholar 

  31. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  32. Xu, K., Zhang, Z., Ren, F.: LAPRAN: a scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 491–507. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_30

    Chapter  Google Scholar 

  33. Yao, H., Dai, F., Zhang, D., Ma, Y., Zhang, S., Zhang, Y.: DR2-net: deep residual reconstruction network for image compressive sensing. Neurocomputing 359, 483–493 (2017)

    Article  Google Scholar 

  34. Zhang, J., Zhao, D., Jiang, F., Gao, W.: Structural group sparse representation for image compressive sensing recovery. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) 2013 Data Compression Conference, DCC 2013, Snowbird, UT, USA, 20–22 March 2013, pp. 331–340. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingliang Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 514 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, R., Zhang, Y., Huang, D., Chen, Q. (2020). Sequential Convolution and Runge-Kutta Residual Architecture for Image Compressed Sensing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics