Abstract
High-quality and complete 4D reconstruction of human activities is critical for immersive VR/AR experience, but it suffers from inherent self-scanning constraint and consequent fragile tracking under the monocular setting. In this paper, inspired by the huge potential of learning-based human modeling, we propose RobustFusion, a robust human performance capture system combined with various data-driven visual cues using a single RGBD camera. To break the orchestrated self-scanning constraint, we propose a data-driven model completion scheme to generate a complete and fine-detailed initial model using only the front-view input. To enable robust tracking, we embrace both the initial model and the various visual cues into a novel performance capture scheme with hybrid motion optimization and semantic volumetric fusion, which can successfully capture challenging human motions under the monocular setting without pre-scanned detailed template and owns the reinitialization ability to recover from tracking failures and the disappear-reoccur scenarios. Extensive experiments demonstrate the robustness of our approach to achieve high-quality 4D reconstruction for challenging human motions, liberating the cumbersome self-scanning constraint.
Z. Su and L. Xu—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Aguiar, E., et al.: Performance capture from sparse multi-view video 27(3), 98:1–10 (2008)
Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.: Tex2Shape: detailed full human body geometry from a single image. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH 2005, pp. 408–416. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1186822.1073207
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34
Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: Computer Vision and Pattern Recognition (CVPR) (1998). https://doi.org/10.1109/CVPR.1998.698581
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Collet, A., et al.: High-quality streamable free-viewpoint video. ACM Trans. Graph. (TOG) 34(4), 69 (2015)
Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, pp. 303–312. ACM, New York (1996). https://doi.org/10.1145/237170.237269
Dou, M., et al.: Motion2Fusion: real-time volumetric performance capture. ACM Trans. Graph. 36(6), 246:1–246:16 (2017)
Dou, M., et al.: Fusion4D: real-time performance capture of challenging scenes. In: ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques (2016)
Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion capture. Int. J. Comput. Vis. (IJCV) 87(1–2), 75–92 (2010)
Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera (2010)
Gong, K., Liang, X., Li, Y., Chen, Y., Yang, M., Lin, L.: Instance-level human parsing via part grouping network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 805–822. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_47
Gong, K., Liang, X., Zhang, D., Shen, X., Lin, L.: Look into person: self-supervised structure-sensitive learning and a new benchmark for human parsing. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Guo, K., et al.: The relightables: volumetric performance capture of humans with realistic relighting. ACM Trans. Graph. 38(6) (2019)
Guo, K., et al.: TwinFusion: high framerate non-rigid fusion through fast correspondence tracking. In: International Conference on 3D Vision (3DV), pp. 596–605 (2018)
Guo, K., Xu, F., Wang, Y., Liu, Y., Dai, Q.: Robust non-rigid motion tracking and surface reconstruction using L0 regularization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3083–3091 (2015)
Guo, K., Xu, F., Yu, T., Liu, X., Dai, Q., Liu, Y.: Real-time geometry, albedo and motion reconstruction using a single RGBD camera. ACM Trans. Graph. (TOG) (2017)
Habermann, M., Xu, W., Zollhöfer, M., Pons-Moll, G., Theobalt, C.: LiveCap: real-time human performance capture from monocular video. ACM Trans. Graph. (TOG) 38(2), 14:1–14:17 (2019)
Hasler, N., Rosenhahn, B., Thormahlen, T., Wand, M., Gall, J., Seidel, H.P.: Markerless motion capture with unsynchronized moving cameras. In: Computer Vision and Pattern Recognition (CVPR), pp. 224–231 (2009)
Huang, Z., et al.: Deep volumetric video from very sparse multi-view performance capture. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 351–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_21
Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., Stamminger, M.: VolumeDeform: real-time volumetric non-rigid reconstruction, October 2016
Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3334–3342 (2015)
Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Kovalenko, O., Golyanik, V., Malik, J., Elhayek, A., Stricker, D.: Structure from articulated motion: accurate and stable monocular 3D reconstruction without training data. Sensors 19(20) (2019)
Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction 28(5), 175 (2009)
Li, H., et al.: Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31 (2012)
Liu, Y., Gall, J., Stoll, C., Dai, Q., Seidel, H.P., Theobalt, C.: Markerless motion capture of multiple characters using multiview image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2720–2735 (2013)
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 248:1–248:16 (2015)
Martin-Brualla, R., et al.: Lookingood: enhancing performance capture with real-time neural re-rendering. ACM Trans. Graph. 37(6) (2018)
Mehta, D., et al.: VNect: real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graph. (TOG) 36(4) (2017)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Mitra, N.J., Floery, S., Ovsjanikov, M., Gelfand, N., Guibas, L., Pottmann, H.: Dynamic geometry registration. In: Symposium on Geometry Processing (2007)
Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time, June 2015
Pandey, R., et al.: Volumetric capture of humans with a single RGBD camera via semi-parametric learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10975–10985, June 2019. http://smpl-x.is.tue.mpg.de
Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Harvesting multiple views for marker-less 3D human pose annotations. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Pumarola, A., Sanchez-Riera, J., Choi, G.P.T., Sanfeliu, A., Moreno-Noguer, F.: 3Dpeople: modeling the geometry of dressed humans. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Robertini, N., Casas, D., Rhodin, H., Seidel, H.P., Theobalt, C.: Model-based outdoor performance capture. In: International Conference on 3D Vision (3DV) (2016). http://gvv.mpi-inf.mpg.de/projects/OutdoorPerfcap/
Rogez, G., Schmid, C.: Mocap guided data augmentation for 3D pose estimation in the wild. In: Neural Information Processing Systems (NIPS) (2016)
Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Shotton, J., et al.: Real-time human pose recognition in parts from single depth images (2011)
Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: Computer Vision and Pattern Recognition (CVPR) (2017)
Slavcheva, M., Baust, M., Cremers, D., Ilic, S.: KillingFusion: non-rigid 3D Reconstruction without Correspondences. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Slavcheva, M., Baust, M., Ilic, S.: SobolevFusion: 3D reconstruction of scenes undergoing free non-rigid motion. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Slavcheva, M., Baust, M., Ilic, S.: Variational level set evolution for non-rigid 3D reconstruction from a single depth camera. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) (2020)
Stoll, C., Hasler, N., Gall, J., Seidel, H.P., Theobalt, C.: Fast articulated motion tracking using a sums of Gaussians body model. In: International Conference on Computer Vision (ICCV) (2011)
Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. ACM Trans. Graph. (TOG) 26(3), 80 (2007)
Tang, S., Tan, F., Cheng, K., Li, Z., Zhu, S., Tan, P.: A neural network for detailed human depth estimation from a single image. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Yu, T., Zhao, J., Huang, Y., Li, Y., Liu, Y.: Towards robust and accurate single-view fast human motion capture. IEEE Access (2019)
Taylor, J., Shotton, J., Sharp, T., Fitzgibbon, A.: The vitruvian manifold: inferring dense correspondences for one-shot human pose estimation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 103–110 (2012)
Tevs, A., et al.: Animation cartography-intrinsic reconstruction of shape and motion. ACM Trans. Graph. (TOG) (2012)
Theobalt, C., de Aguiar, E., Stoll, C., Seidel, H.P., Thrun, S.: Performance capture from multi-view video. In: Ronfard, R., Taubin, G. (eds.) Image and Geometry Processing for 3-D Cinematography, pp. 127–149. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12392-4_6
Vicon Motion Systems (2019). https://www.vicon.com/
Vlasic, D., et al.: Practical motion capture in everyday surroundings 26, 3 (2007)
Wu, C., Stoll, C., Valgaerts, L., Theobalt, C.: On-set performance capture of multiple actors with a stereo camera 32, 6 (2013)
Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: posing face, body, and hands in the wild. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Xsens Technologies B.V. (2019) https://www.xsens.com/
Xu, L., Cheng, W., Guo, K., Han, L., Liu, Y., Fang, L.: FlyFusion: realtime dynamic scene reconstruction using a flying depth camera. IEEE Trans. Vis. Comput. Graph., 1 (2019)
Xu, L., Su, Z., Han, L., Yu, T., Liu, Y., FANG, L.: UnstructuredFusion: realtime 4D geometry and texture reconstruction using commercial RGBD cameras. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2019)
Xu, L., et al.: FlyCap: markerless motion capture using multiple autonomous flying cameras. IEEE Trans. Visual Comput. Graphics 24(8), 2284–2297 (2018)
Xu, L., Xu, W., Golyanik, V., Habermann, M., Fang, L., Theobalt, C.: EventCap: monocular 3D capture of high-speed human motions using an event camera. arXiv e-prints (2019)
Xu, W., et al.: MonoPerfCap: human performance capture from monocular video. ACM Trans. Graph. (TOG) 37(2), 27:1–27:15 (2018)
Yu, T., et al.: BodyFusion: real-time capture of human motion and surface geometry using a single depth camera. In: The IEEE International Conference on Computer Vision (ICCV). ACM, October 2017
Yu, T., et al.: DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor. Trans. Pattern Anal. Mach. Intell. (TPAMI) (2019)
Zheng, Z., et al.: HybridFusion: real-time performance capture using a single depth sensor and sparse IMUs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 389–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_24
Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: DeepHuman: 3D human reconstruction from a single image. In: The IEEE International Conference on Computer Vision (ICCV), October 2019
Zhu, H., Zuo, X., Wang, S., Cao, X., Yang, R.: Detailed human shape estimation from a single image by hierarchical mesh deformation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Zhu, T., Oved, D.: Bodypix github repository (2019). https://github.com/tensorflow/tfjs-models/tree/master/body-pix
Zollhöfer, M., et al.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. (TOG) 33(4), 156 (2014)
Acknowledgement
This work is supported in part by Natural Science Foundation of China under contract No. 61722209 and 6181001011, in part by Shenzhen Science and Technology Research and Development Funds (JCYJ201805071 83706645).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 75221 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Su, Z., Xu, L., Zheng, Z., Yu, T., Liu, Y., Fang, L. (2020). RobustFusion: Human Volumetric Capture with Data-Driven Visual Cues Using a RGBD Camera. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-58548-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58547-1
Online ISBN: 978-3-030-58548-8
eBook Packages: Computer ScienceComputer Science (R0)