
Side-Aware Boundary Localization for
More Precise Object Detection

Jiaqi Wang1, Wenwei Zhang2, Yuhang Cao1, Kai Chen3, Jiangmiao Pang4,
Tao Gong5, Jianping Shi3, Chen Change Loy2, and Dahua Lin1

1 The Chinese University of Hong Kong
2 Nanyang Technological University 3 SenseTime Research

4 Zhejiang University 5 University of Science and Technology of China
{wj017,dhlin}@ie.cuhk.edu.hk

{yhcao6,chenkaidev,pangjiangmiao,gongtao950513}@gmail.com
{wenwei001,ccloy}@ntu.edu.sg shijianping@sensetime.com

Abstract. Current object detection frameworks mainly rely on bound-
ing box regression to localize objects. Despite the remarkable progress
in recent years, the precision of bounding box regression remains unsat-
isfactory, hence limiting performance in object detection. We observe
that precise localization requires careful placement of each side of the
bounding box. However, the mainstream approach, which focuses on
predicting centers and sizes, is not the most effective way to accomplish
this task, especially when there exists displacements with large vari-
ance between the anchors and the targets. In this paper, we propose an
alternative approach, named as Side-Aware Boundary Localization
(SABL), where each side of the bounding box is respectively localized
with a dedicated network branch. To tackle the difficulty of precise local-
ization in the presence of displacements with large variance, we further
propose a two-step localization scheme, which first predicts a range of
movement through bucket prediction and then pinpoints the precise
position within the predicted bucket. We test the proposed method on
both two-stage and single-stage detection frameworks. Replacing the
standard bounding box regression branch with the proposed design leads
to significant improvements on Faster R-CNN, RetinaNet, and Cascade
R-CNN, by 3.0%, 1.7%, and 0.9%, respectively. Code is available at
https://github.com/open-mmlab/mmdetection.

1 Introduction

The development of new frameworks for object detection, e.g., Faster R-CNN [37],
RetinaNet [25], and Cascade R-CNN [1], has substantially pushed forward the
state of the art. All these frameworks, despite the differences in their technical
designs, have a common component, namely bounding box regression, for object
localization.

Generally, bounding box regression is trained to align nearby proposals to
target objects. In a common design, the bounding box regression branch predicts
the offsets of the centers (δx, δy) together with the relative scaling factors (δw, δh)

ar
X

iv
:1

91
2.

04
26

0v
2 

 [
cs

.C
V

] 
 2

6 
A

ug
 2

02
0

https://github.com/open-mmlab/mmdetection


2 J. Wang et al.

Proposal

Bucketing
Estimation

(a) Bounding Box Regression (b) SABL
Pred Box

Fine 
Regression

Buckets

Fig. 1. The Illustration of Side-Aware Boundary Localization (SABL). (a)
Common Bounding box Regression directly predicts displacements from proposals to
ground-truth boxes. (b) SABL focuses on object boundaries and localizes them with a
bucketing scheme comprising two steps: bucketing estimation and fine regression

based on the features of RoI (Region of Interest). While this design has been
shown to be quite effective in previous works, it remains very difficult to precisely
predict the location of an object when there exists a displacement, with large
variance, between the anchor and the target. This difficulty also limits the overall
detection performance.

In recent years, various efforts have been devoted to improving the local-
ization precision, such as cascading the localization process [1,12,20,41], and
treating localization as a procedure to segment grid points [29]. Although being
shown effective in boosting the accuracy of localization, adoption of these meth-
ods complicates the detection pipeline, resulting in considerable computational
overhead.

In this work, we aim to explore a new approach to object localization that
can effectively tackle precise localization with a lower overhead. Empirically, we
observe that when we manually annotate a bounding box for an object, it is often
much easier to align each side of the box to the object boundary than to move the
box as a whole while tuning the size. Inspired by this observation, we propose a
new design, named as Side-Aware Boundary Localization (SABL), where
each side of the bounding box is respectively positioned based on its surrounding
context. As shown in Figure 1, we devise a bucketing scheme to improve the
localization precision. For each side of a bounding box, this scheme divides the
target space into multiple buckets, then determines the bounding box via two
steps. Specifically, it first searches for the correct bucket, i.e., the one in which
the boundary resides. Leveraging the centerline of the selected buckets as a
coarse estimate, fine regression is then performed by predicting the offsets. This
scheme allows very precise localization even in the presence of displacements with
large variance. Moreover, to preserve precisely localized bounding boxes in the
non-maximal suppression procedure, we also propose to adjust the classification
score based on the bucketing confidences, which leads to further performance
gains.



Side-Aware Boundary Localization for More Precise Object Detection 3

We evaluate the proposed SABL upon various detection frameworks, includ-
ing two-stage [37], single-stage [25], and cascade [1] detectors. By replacing the
existing bounding box regression branch with the proposed design, we achieve
significant improvements on COCO test-dev [26] without inflicting high computa-
tional cost, i.e. 41.8% vs. 38.8% AP with only around 10% extra inference time
on top of Faster R-CNN, 40.5% vs. 38.8% AP without extra inference time on
top of RetinaNet. Furthermore, we integrate SABL into Cascade R-CNN, where
SABL achieves consistent performance gains on this strong baseline, i.e., 43.3%
vs. 42.4% AP .

2 Related Work

Object Detection. Object detection is one of the fundamental tasks for com-
puter vision applications [44,19,48,46]. Recent years have witnessed a dramatic im-
provement in object detection [11,50,45,52,7,40,2,6]. The two-stage pipeline [13,37]
has been the leading paradigm in this area. The first stage generates a set of
region proposals, and then the second stage classifies and refines the coordi-
nates of proposals by bounding box regression. This design is widely adopted
in the later two-stage methods [9,16]. Compared to two-stage approaches, the
single-stage pipeline [25,28,35,36] predicts bounding boxes directly. Despite omis-
sion of the proposal generation process, single-stage methods [25,28,49] require
densely distributed anchors produced by sliding window. Recently, some works
attempt to use anchor-free methods [21,23,39] for object detection. Intuitively,
iteratively performing the classification and regression process could effectively
improve the detection performance. Therefore, many attempts [1,12,20,41,31,47]
apply cascade architecture to regress bounding boxes iteratively for progressive
refinement.
Object Localization. Object localization is one of the crucial and fundamental
modules for object detection. A common approach for object localization is to
regress the center coordinate and the size of a bounding box [9,13,28,37,14].
This approach is widely adopted, yet the precision is unsatisfactory due to the
large variance of regression target. Aiming for a more accurate localization, some
methods [1,20,41,31,47,3] directly repeat the bounding box regression multiple
times to further improve accuracy. However, such cascading pipeline expenses
much more computational overhead. Some methods that try to reformat the
object localization process. Grid R-CNN [29] adopts a grid localization mechanism
to encode more clues for accurate object detection. It deals with localization
as a procedure to segment grid points, which involves a heavy mask prediction
process. CenterNet [51] combines the classification and regression to localize the
object center. It predicts possible object centers on a keypoint heatmap and then
adjusts the centers by regression. A similar idea is also adopted in 3D object
detection [38]. However, they still fall into the tradition center localization and
size estimation paradigm, and the localization precision is still unsatisfactory.
LocNet [12] predicts probabilities for object borders or locations inside the object’s
bounding box. However, the resolution of RoI features limits the performance of



4 J. Wang et al.

Sum Along Y-axis 

Upsample

Upsample

Y-axis

X-axis

Conv 1x3 

Conv 3x1 

2x Conv3x3

Conv 1x1 

Sum Along X-axis 

Conv 1x1 

Normalize Along Y-axis 

Normalize Along X-axis 

ℳ𝑥

ℳ𝑦

ℱ𝑥

ℱ𝑦

ℱ

1.Side-aware Feature Extraction

Split

Bucketing 
Estimationℱ𝑙𝑒𝑓𝑡

ℱ𝑟𝑖𝑔ℎ𝑡

ℱ𝑡𝑜𝑝

ℱ𝑑𝑜𝑤𝑛

𝑥𝑙𝑒𝑓𝑡

𝑥𝑟𝑖𝑔ℎ𝑡

𝑦𝑡𝑜𝑝

𝑦𝑑𝑜𝑤𝑛

fc

Fine 
Regression

Project

7x256

7x1 1x256 1x1

fc

Vote

Averaged Bucketing
Confidence

2.Boundary Localization 
With Bucketing

Backbone RoIAlign

7x7 RoI Feature

Proposals

ℱ0

Classification2 x fc

Classification Scores

3.Rescoring

1.Side-aware 
Feature Extraction

2.Boundary Localization
With Bucketing

NMS 
Scores

ℱ𝑙𝑒𝑓𝑡

ℱ𝑟𝑖𝑔ℎ𝑡

ℱ𝑡𝑜𝑝

ℱ𝑑𝑜𝑤𝑛

Fig. 2. Pipeline of Side-Aware Boundary Localization (SABL) for the two-stage
detector (see above). First, RoI features are aggregated to produce side-aware features
in the Side-Aware Feature Extraction module. Second, the Boundary Localization with
Bucketing module is performed to localize the boundaries by a two-step bucketing
scheme. Each boundary is first coarsely estimated into buckets and then finely regressed
to more precise localization. Third, the confidences of buckets are adopted to assist the
classification scores

LocNet because it needs to transfer the probability of pixels into the bounding
box location. On the contrary, our method focuses on the boundaries of object
bounding box and decomposes the localization process for each boundary with
a bucketing scheme. We also leverage the bucketing estimation confidence to
improve the classification results. Performing localization in one pass, SABL
achieves substantial gains on both two-stage and single-stage pipelines while
keeping their efficiency.

3 Side-Aware Boundary Localization

Accurate object localization is crucial for object detection. Most current methods
directly regress the normalized displacements between proposals and ground-truth
boxes. However, this paradigm may not provide satisfactory localization results
in one pass. Some methods [1,20,41] attempt to improve localization performance
with a cascading pipeline at the expense of considerable computational costs. A
lightweight as well as effective approach thus becomes necessary.

We propose Side-Aware Boundary Localization (SABL) as an alternative for
the conventional bounding box regression to locate the objects more accurately.
As shown in Figure 2, it first extracts horizontal and vertical features Fx and



Side-Aware Boundary Localization for More Precise Object Detection 5

Fy by aggregating the RoI features F along X-axis and Y-axis, respectively, and
then splits Fx and Fy into side-aware features Fleft, Fright, Ftop and Fdown.
(Section 3.1). Then for each side of a bounding box, SABL first divides the
target space into multiple buckets (as shown in Figure 1) and searches for the
one where the boundary resides via leveraging the side-aware features. It will
refine the boundary location xleft, xright, ytop and ydown by further predicting
their offsets from the bucket’s centerline (Section 3.2). Such a two-step bucketing
scheme could reduce the regression variance and ease the difficulties of prediction.
Furthermore, the confidence of estimated buckets could also help to adjust
the classification scores and further improve the performance (Section 3.3).
With minor modifications, SABL is also applicable for single-stage detectors
(Section 3.4).

3.1 Side-Aware Feature Extraction

As shown in Figure 2, we extract side-aware features Fleft, Fright, Ftop, and Fdown

based on the k×k RoI features F (k = 7). Following typical conventions [13,37,16],
we adopt RoIAlign to obtain the RoI feature of each proposal. Then we utilize two
3× 3 convolution layers to transform it to F . To better capture direction-specific
information of the RoI region, we employ the self-attention mechanism to enhance
the RoI feature. Specifically, we predict two different attention maps from F
with a 1× 1 convolution, which are then normalized along the Y-axis and X-axis,
respectively. Taking the attention maps Mx and My, we aggregate F to obtain
Fx and Fy as follows,

Fx =
∑
y

F(y, :) ∗Mx(y, :),

Fy =
∑
x

F(:, x) ∗My(:, x).
(1)

Fx and Fy are both a 1-D feature map of shape 1× k and k × 1, respectively.
They are further refined by a 1× 3 or 3× 1 convolution layer and upsampled by a
factor of 2 through a deconvolution layer, resulting in 1× 2k and 2k × 1 features
on the horizontal and vertical directions, respectively. Finally, the upsampled
features are simply split into two halves, leading to the side-aware features Fleft,
Fright, Ftop and Fdown.

3.2 Boundary Localization with Bucketing

As shown in the module 2 of Figure 2, we decompose the localization process
into a two-step bucketing scheme: bucketing estimation and fine regression. The
candidate region of each object boundary is divided into buckets horizontally
and vertically. We first estimate in which bucket the boundary resides and then
regress a more accurate boundary localization from this bucket.
Two-Step Bucketing Scheme. Given a proposal box, i.e., (Bleft, Bright, Btop,
Bdown), we relax the candidate region of boundaries by a scale factor of σ (σ > 1),
to cover the entire object. The candidate regions are divided into 2k buckets on



6 J. Wang et al.

Top 1 Bucket Top 2 Bucket

(b) Fine Regression Target

gt box

proposal

Positive 
Label

Ignored
Label

Negative 
Label

(a) Bucketing Estimation Label

extended proposal

gt box

Fig. 3. The localization tar-
get of SABL for bucketing
estimation and fine regres-
sion on X-axis. The localiza-
tion target for Y-axis can be
calculated similarly

both X-axis and Y-axis, with k buckets corresponding to each boundary. The
width of each bucket on X-axis and Y-axis are therefore lx = (σBright−σBleft)/2k
and ly = (σBdown − σBtop)/2k, respectively. In the bucketing estimation step,
we adopt a binary classifier to predict whether the boundary is located in or is
the closest to the bucket on each side, based on the side-aware features. In the
fine regression step, we apply a regresser to predict the offset from the centerline
of the selected bucket to the ground-truth boundary.
Localization Targets. There are a bucketing estimation and a fine regression
branch in the bucketing scheme to be trained. We follow the conventional meth-
ods [13,37] for label assigning and proposal sampling. The bucketing estimation
determines the nearest buckets to the boundaries of a ground-truth bounding
box by binary classification. As shown in Figure 3, on each side, the bucket,
whose centerline is the nearest to the ground-truth boundary, is labeled as 1
(positive sample), while the others are labeled as 0 (negative samples). To reduce
the ambiguity in training, on each side, we ignore the bucket that is the second
nearest to the ground-truth boundary because it is hard to be distinguished from
the positive one. For each side, we ignore negative buckets when training the
boundary regressor. To increase the robustness of the fine regression branch, we
include both the nearest (labeled as “positive” in the bucketing estimation step)
bucket and the second nearest (labeled as “ignore” in the bucketing estimation
step) bucket to train the regressor. The regression target is the displacement
between the bucket centerline and the corresponding ground-truth boundary. To
ease the training difficulties of regressors, we normalize the target by lx and ly
on the corresponding axes.

3.3 Bucketing-Guided Rescoring

The bucketing scheme brings a natural benefit, i.e., the bucketing estimation
confidences can represent the reliability of predicted locations. With the aim
at keeping the more accurately localized bounding boxes during non-maximal
suppression (NMS), we utilize the localization reliability to guide the rescoring.



Side-Aware Boundary Localization for More Precise Object Detection 7

NMS
Scores

Box Subnet

Class Subnet

Bucketing 
Estimation

Fine 
Regression

Classification
Scores

Averaged Bucketing
Confidence

4x Convs

Project

28

4x Convs

FPN
Feature Map

Vote

H

W

H

W

H

W

H

W

H

W

H

W

ℱ𝑙𝑒𝑓𝑡 ℱ𝑟𝑖𝑔ℎ𝑡

ℱ𝑡𝑜𝑝 ℱ𝑑𝑜𝑤𝑛

Fig. 4. Pipeline of Side-Aware Boundary Localization (SABL) for the single-
stage detector. Since there is no RoI features, SABL adopts convolution layers to
produce the feature for localization at each location. Then bucketing estimation and fine
regression are performed based on this feature at each location. Furthermore, bucketing
estimation confidence is leveraged to adjust the classification scores as well

Therefore, SABL averages the bucketing estimation confidence scores of four
boundaries. The multi-category classification scores are multiplied by the averaged
localization confidence, and then used for ranking candidates during NMS. The
rescoring helps maintain the best box with both high classification confidence
and accurate localization.

3.4 Application to Single-Stage Detectors

SABL can also be applied to single-stage detectors such as [25], with minor
modifications. Since there is no proposal stage in single-stage detectors, Side-
Aware Feature Extraction (SAFE) is not adopted and the feature extraction is
performed following RetinaNet [25]. As shown in Figure 4, on top of the FPN
features, four convolution layers are adopted to classification and localization
branches respectively. Following the state of the arts [39,51,21], Group Normal-
ization (GN) [42] is adopted in these convolution layers. At each position of
FPN feature maps, there is only one anchor used for detection following [41].
The size of this anchor is γ ∗ s, where γ is a hyperparameter (γ = 8), and s is
the stride of the current feature map. SABL learns to predict and classify one
bounding box based on this anchor. The target assignment process follows the
same setting as in [41]. Specifically, we utilize multiple (9 by default) anchors
on each location to compute IoUs and match the ground-truths for this location
during training, but the forward process only involves one anchor per location.
This design enables SABL to cover more ground-truths and be better optimized,
as well as keeping its efficiency. After using convolution layers to produce the
feature for localization on each position, the ensuing Boundary Localization with
Bucketing and Bucketing-Guided Rescoring remain the same.



8 J. Wang et al.

4 Experiments

4.1 Experimental Setting

Dataset. We perform experiments on the challenging MS COCO 2017 bench-
mark [26]. We use the train split for training and report the performance on the
val split for ablation study. Detection results for comparison with other methods
are reported on the test-dev split if not further specified.
Implementation Details. During training, We follow the 1x training sched-
uler [15] and use mmdetection [5] as the codebase. We train Faster R-CNN [37],
Cascade R-CNN [1] and RetinaNet [25] with batch size of 16 for 12 epochs. We
apply an initial learning rate of 0.02 for Faster R-CNN, Cascade R-CNN, and 0.01
for RetinaNet. ResNet-50 [17] with FPN [24] backbone is adopted if not further
specified. The long edge and short edge of images are resized to 1333 and 800
respectively without changing the aspect ratio during training and inference if
not otherwise specified. The scale factor σ is set as 1.7 and 3.0 for Faster R-CNN
and RetinaNet, respectively. For Cascade R-CNN, we replace the original bbox
head with the proposed SABL, and σ for three cascading stages are set as 1.7,
1.5 and 1.3, respectively. k is set to 7 for all experiments if not further specified.
GN is adopted in RetinaNet and RetinaNet w/ SABL as in Sec 3.4 but not in
Faster R-CNN and Cascade R-CNN. Detection results are evaluated with the
standard COCO metric. The runtime is measured on a single Tesla V100 GPU.
Training Details. The proposed framework is optimized in an end-to-end
manner. For the two-stage pipeline, the RPN loss Lrpn and classification loss
Lcls remain the same as Faster R-CNN [37]. We replace the bounding box
regression loss by a bucketing estimation loss Lbucketing and a fine regression
loss Lreg. Specifically, Lbucketing adopts Binary Cross-Entropy Loss, Lreg applies
Smooth L1 Loss. In summary, a general loss function can be written as follows:
L = λ1Lrpn +Lcls +λ2(Lbucketing +Lreg), where λ1 = 1, λ2 = 1 for the two-stage
pipeline, λ1 = 0, λ2 = 1.5 for the single stage pipeline.

4.2 Results

We show the effectiveness of SABL by applying SABL on RetinaNet, Faster
R-CNN and Cascade R-CNN with ResNet-101 [17] with FPN [24] backbone. To
be specific, we adopt SABL to Faster R-CNN and RetinaNet as described in
Sec. 3. As shown in Table 1, SABL improves the AP of RetinaNet by 1.7% with
no extra cost, and Faster R-CNN by 3.0% with only around 10% extra inference
time. We further apply SABL to the powerful Cascade R-CNN. SABL improves
the performance by 0.9% on this strong baseline.

The significant performance gains on various object detection architectures
show that SABL is a generally efficient and effective bounding box localization
method for object detection. We further compare SABL with other advanced
detectors in Table 1. The reported performances here either come from the
original papers or from released implementations and models. SABL exhibits the
best performance among these methods and retains its efficiency. To make a fair



Side-Aware Boundary Localization for More Precise Object Detection 9

Table 1. Comparison to mainstream methods with ResNet-101 FPN backbone on
COCO dataset. m.s. indicates multi-scale training. Sch. indicates training schedule. 50e
indicates 50 epochs. Data indicates the results are evaluated on the corresponding data
split of COCO dataset, e.g., some two-stage detectors are evaluated on COCO val split

Method Backbone Sch. AP AP50 AP75 APS APM APL FPS

RetinaNet [25] ResNet-101 1x 38.8 60.0 41.7 21.9 42.1 48.6 13.0
FSAF [52] (m.s.) ResNet-101 1.5x 40.9 61.5 44.0 24.0 44.2 51.3 12.4
FCOS [39] (m.s.) ResNet-101 2x 41.5 60.7 45.0 24.4 44.8 51.6 13.5

GA-RetinaNet [41] (m.s.) ResNet-101 2x 41.9 62.2 45.3 24.0 45.3 53.8 11.7
CenterNet [51] (m.s.) Hourglass-104 50e 42.1 61.1 45.9 24.1 45.5 52.8 8.9
FoveaBox [21] (m.s.) ResNet-101 2x 42.0 63.1 45.2 24.7 45.8 51.9 12.8
RepPoints [45] (m.s.) ResNet-101 2x 42.6 63.5 46.2 25.4 46.2 53.3 12.2

RetinaNet w/ SABL ResNet-101 1x 40.5 59.3 43.6 23.0 44.1 51.3 13.0
RetinaNet w/ SABL (m.s.) ResNet-101 1.5x 42.7 61.4 46.0 25.3 46.8 53.5 13.0
RetinaNet w/ SABL (m.s.) ResNet-101 2x 43.2 62.0 46.6 25.7 47.4 53.9 13.0

Method Backbone Data AP AP50AP75APSAPM APL FPS

Faster R-CNN [37] ResNet-101 val 38.5 60.3 41.6 22.3 43.0 49.8 13.8
Faster R-CNN [37] ResNet-101 test-dev 38.8 60.9 42.3 22.3 42.2 48.6 13.8

IoU-Net [20] ResNet-101 val 40.6 59.0 - - - - -
GA-Faster R-CNN [41] ResNet-101 test-dev 41.1 59.9 45.2 22.4 44.4 53.0 11.5
Grid R-CNN Plus [30] ResNet-101 test-dev 41.4 60.1 44.9 23.4 44.8 52.3 11.1

Faster R-CNN w/ SABL ResNet-101 val 41.6 59.5 45.0 23.5 46.5 54.6 12.4
Faster R-CNN w/ SABL ResNet-101 test-dev41.8 60.2 45.0 23.7 45.3 52.7 12.4

Cascade R-CNN [1] ResNet-101 test-dev 42.4 61.1 46.1 23.6 45.4 54.1 11.2

Cascade R-CNN w/ SABLResNet-101 test-dev43.3 60.9 46.2 23.8 46.5 55.7 8.8

comparison with other single stage-detectors, we employ multi-scale training, i.e.,
randomly scaling the shorter edge of input images from 640 to 800 pixels, and
the training schedule is extended to 2x. For two-stage detectors, the 1x training
schedule is adopted. As shown in Table 1, Faster R-CNN w/ SABL outperforms
recent two-stage detectors [20,41,30] that also aim at better localization precision.
To be specific, IoU-Net [20] and GA-Faster RCNN [41] adopt iterative regression,
and Grid R-CNN Plus [30] improves localization by leveraging a keypoint pre-
diction branch. The experimental results reveal the advantages of the proposed
SABL among advanced localization pipelines.

4.3 Ablation Study

Model Design. We omit different components of SABL on two-stage pipeline
to investigate the effectiveness of each component, including Side-Aware Feature
Extraction (SAFE), Boundary Localization with Bucketing (BLB) and Bucketing-
Guided Rescoring (BGR). The results are shown in Table 2. We use Faster R-CNN



10 J. Wang et al.

Table 2. The effects of each module in our design. SAFE, BLB, BGR denote Side-
Aware Feature Extraction, Boundary Localization with Bucketing and Bucketing-Guided
Rescoring, respectively

SAFE BLB BGR AP AP50 AP75 AP90 APS APM APL

36.4 58.4 39.3 8.3 21.6 40.0 47.1
X 38.5 58.2 41.6 14.3 23.0 42.5 49.5

X 38.3 57.6 40.5 16.1 22.3 42.6 49.7
X X 39.0 57.5 41.9 17.1 22.6 43.2 50.9

X X 39.0 57.9 41.4 17.8 22.7 43.4 49.9
X X X 39.7 57.8 42.8 18.8 23.1 44.1 51.2

with ResNet-50 [17] w/ FPN [24] backbone as the baseline. Faster R-CNN adopts
center offsets and scale factors of spatial sizes, i.e., (δx, δy, δw, δh) as regression
targets and achieves 36.4% AP on COCO val set. SABL significantly improves the
baseline by 3.3% AP, especially on high IoU thresholds, e.g., SABL tremendously
improves AP90 by 10.5%.

Side-Aware Feature Extraction (SAFE). In Table 2, we apply Side-Aware
Feature Extraction (SAFE) as described in Sec. 3.1. In order to leverage the side-
aware features, side-aware regression targets are required. We introduce boundary
regression targets, i.e., the offset of each boundary (δx1, δy1, δx2, δy2). This simple
modification improves the performance from 36.4% to 37.3%, demonstrating
that localization by each boundary is more preferable than regressing the box
as a whole. SAFE focuses on content of the corresponding side and further
improves the performance from 37.3% to 38.5%. To verify that simply adding
more parameters will not apparently improve the performance, we also train
a Faster RCNN with boundary regression and 4conv1fc head. The 4conv1fc
head contains four 3x3 convolution layers followed by one fully-connected layer.
Although the 4conv1fc head is heavier than SAFE, it marginally improves the
AP by 0.1%, i.e., from 37.3% to 37.4%.

Boundary Localization with Bucketing (BLB). As described in Sec. 3.2, BLB
divides the RoI into multiple buckets, it first determines which bucket the
boundary resides and takes the centerline of the selected bucket as a coarse
estimation of boundary. Then it performs fine regression to localize the boundary
precisely. BLB achieves 38.3%, outperforming the popular bounding box regression
by 1.9%. Combining BLB with SAFE further improves the AP to 39.0%.

Bucketing-Guided Rescoring (BGR). Bucketing-Guided Rescoring (BGR)
is proposed to adjust the classification scores as in Sec. 3.3. The bucketing
confidence can naturally be used to represent how confident the model believes
that a boundary is precisely localized. We average the confidences of selected
buckets for four boundaries and multiply it to classification scores before NMS.
Applying the BGR further improves the performance by 0.7% AP .

Side-Aware Feature Extraction. Side-Aware Feature Extraction (SAFE) is
used to aggregate the 2D RoI features to 1D features for X-axis and Y-axis,
respectively. Here we perform a thorough ablation study for SAFE.



Side-Aware Boundary Localization for More Precise Object Detection 11

Table 3. Number of convolution layers for Side-Aware Feature Extraction (SAFE)
module. 2D Conv indicates the number of 3x3 Convolution layers before F . 1D Conv
indicates the number of 1x3 and 3x1 convolution layers before Fx and Fy, respectively

2D Conv 1D Conv AP Param FLOPS 2D Conv 1D Conv AP Param FLOPS

0 1 38.3 40.8M 212G 2 0 39.5 41.6M 267G
0 2 38.3 41.2M 215G 2 1 39.7 42M 270G
1 1 39.3 41.4M 241G 2 2 39.6 42.4M 273G
1 2 39.4 41.8M 244G 3 1 39.7 42.6M 299G

Table 4. Comparison of different meth-
ods to aggregate the 2D RoI features into
1D features in SAFE module

Aggregating Method AP

Max Pooling 39.4
Average Pooling 39.3
Attention Mask 39.7

Table 5. Comparison of different settings
of feature size in SAFE module

RoI Upsample AP FLOPS

7 7 39.0 266G
7 14 39.7 270G
7 28 39.1 281G
14 14 39.7 443G

Parameters. In SAFE, after performing the RoI pooling, we apply two 3x3
convolution layers to obtain F . We adopt one 1x3 and the other 3x1 convolution
layers after aggregating the 1D features on horizontal and vertical directions to
obtain Fx and Fy, respectively. We investigate the influence of these convolution
layers. As shown in Table 3, we list the performance as well as parameters and
FLOPS under different settings. It’s noteworthy that Faster R-CNN w/ SABL
still achieves satisfactory performance with smaller computational cost. Thus the
proposed method could be flexibly adjusted to fulfill different requirements of
computational cost.

Feature aggregating method. As in Sec 3.1, we apply a self-attention mechanism
to aggregate 2D RoI features into 1D features. The max pooling and average
pooling are two alternative approaches in this procedure. In Table 4, experimental
results reveal that the proposed attention mask is more effective than max or
average pooling to aggregate RoI features.

Size of Side-Aware Features. In the Side-Aware Feature Extraction module,
we first perform RoI-Pooling and get the RoI features with spatial size 7 × 7.
The RoI features are aggregated into 1D features with size 1× 7 and 7× 1, and
then upsampled to size of 1× 14 and 14× 1 by a deconvolution layer. We study
RoI features size and upsampled features size. As shown in Table 5, our settings,
i.e., RoI size of 7 and upsampled size of 14, achieve the best trade-off between
effectiveness and efficiency.

Boundary Localization with Bucketing. Here we discuss the effectiveness of
different designs for localization. In our work, we propose Boundary Localization
with Bucketing (BLB), that contains 3 key ideas, i.e., localizing by boundaries,
bucketing estimation and fine regression.



12 J. Wang et al.

Table 6. Influence of different localization pipelines. To crystallize the effectiveness of
Boundary Localization of Bucketing (BLB), Side-Aware Feature Extraction (SAFE)
and Bucketing Guided Rescoring (BGR) are not applied here

Localization Approach AP AP50 AP75 AP90 APS APM APL

Bounding Box Regression 36.4 58.4 39.3 8.3 21.6 40.0 47.1
Boundary Regression 37.3 58.2 40.4 10.6 22.0 41.2 47.8

Bucketing 32.8 56.7 35.9 2.0 20.1 36.5 41.5
Iterative Bucketing 36.8 58.3 40.9 6.0 20.8 40.2 48.1

Center Localization with Bucketing (CLB) 36.9 57.6 39.5 11.4 20.8 41.2 47.7
Boundary Localization with Bucketing (BLB) 38.3 57.6 40.5 16.1 22.3 42.6 49.7

0

0.005

0.01

0.015

0.02

0.025

0.5 0.6 0.7 0.8 0.9

w/ Bucketing
w/o Bucketing

(b) Variance
IoU

0

0.04

0.08

0.12

0.16

0.2

0.5 0.6 0.7 0.8 0.9

w/ Bucketing

w/o Bucketing

IoU
(a) Mean

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 5. Mean and
variance of displace-
ments from proposals
to ground-truth bound-
aries w.r.t. the size
of the ground-truth
boxes with or without
bucketing

As shown in Table 6, the proposed BLB achieves significantly higher perfor-
mance than the widespread Bounding Box Regression (38.3% vs. 36.4%), that
adopts center offsets and scale factors of spatial sizes, i.e., (δx, δy, δw, δh) as
regression targets. Switching to Boundary Regression that regresses boundary
offsets (δx1, δy1, δx2, δy2), improves the AP by 0.9%. The result reveals that
localizing the object boundaries is more preferable than localizing object centers.
Moreover, to show the advantages of the proposed design to iterative Bounding
Box Regression, we compare SABL with IoUNet [20], GA-Faster R-CNN [41],
GA-RetinaNet [41] in Table 1.

Bucketing indicates adopting the centerline of the predicted bucket for each
boundary as the final localization. It presents a much inferior performance. Due
to the absence of fine regression, the localization quality is severely affected by
the bucket width. Following LocNet [12], we design a heavy Iterative Bucketing
where the bucketing step is performed iteratively. Although the performance is
improved from 32.8% to 36.8%, it remains inferior to 38.3% of our method.

We also investigate a scheme to localize the object center with bucketing
named Center Localization with Bucketing (CLB). Bucketing estimation and fine
regression are used to localize the object center, and width and height are then
regressed as in the conventional Bounding Box Regression. CLB achieves 1.4%
lower AP than BLB, which further validates the necessity of localizing object
boundaries other than the center.



Side-Aware Boundary Localization for More Precise Object Detection 13

Table 7. Influence of different
designs to generate regression tar-
gets. Ignore and Top2-Reg are de-
scribed in Target design

Ignore Top2-Reg AP

38.7
X 39.1

X 39.4
X X 39.7

Table 8. Influence of different hyper-parameters
in RetinaNet w/ SABL, i.e., scale factor σ, buckets
number and localization loss weight λ2. GN is not
adopted in this table

σ Bucket-Num λ2 AP σ Bucket-Num λ2 AP

2 7 1.5 37.3 3 9 1.5 37.2
3 7 1.5 37.4 3 7 1.0 36.8
4 7 1.5 36.9 3 7 1.25 37.2
3 5 1.5 36.9 3 7 1.75 37.2

Figure 5 shows mean and variance of displacements from proposals to ground-
truth boxes which are normalized by the size of ground-truth boxes. Without loss
of generality, we choose the left boundary to calculate the statistic. The proposals
are split into five groups according to their IoU with the ground-truth, i.e., [0.5,
0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), [0.9, 1.0). Regression with bucketing exhibits
more stable distribution on displacements, easing the difficulties of regression
and lead to more precise localization.

Target design. We further study the training target designs for this module.
1) Ignore: During training bucketing estimation branch, we ignore the second
nearest bucket to ease its ambiguity with the nearest bucket. 2) Top2-Reg : During
training the fine regression branch, buckets with Top-2 displacements to the
ground-truth boundaries are trained to reduce the influence of mis-classification in
bucketing estimation. As shown in Table 7, two proposed designs bring substantial
performance gains. In our study, the classification accuracy of Top-1, Top-2 and
Top-3 buckets are 69.3%, 90.0% and 95.7%, respectively. We also try to train
with Top-3 regression targets, however the performance remains 39.7%.

Scale factor. We study the influence of different scale factors σ to enlarge
proposals during generating localization targets. To be specific, when adopting
σ of 1.1, 1.3, 1.5, 1.7, 1.9, the performance are 39.2%, 39.4%, 39.6%, 39.7%,
39.6%, respectively.
SABL for Single-Stage Detectors. For single-stage detectors, we take Reti-
naNet [25] as a baseline. Following conventions of recent single-stage meth-
ods [39,51,21], GN is adopted in the head of both RetinaNet and RetinaNet w/
SABL. GN improves RetinaNet from 35.6% to 36.6% and RetinaNet w/SABL
from 37.4% to 38.5%. SABL shows consistent improvements over the baseline.
Since the single-stage pipeline is different from the two-stage one, we study
the hyper-parameters as shown in Table 8. Results reveal that the setting of
σ = 3, λ2 = 1.5 and a bucket number of 7 achieves the best performance.
Analysis of Localization Precision. To demonstrate the effectiveness of SABL
on improving the localization quality, we perform quantitative analysis on Faster
R-CNN and Faster R-CNN w/ SABL. We split the proposals into different bins
([0.3, 0.4), [0.4, 0.5), . . . , [0.9, 1)) according to the IoUs with their nearest ground-
truth object, and then compare the average IoU before and after the localization
branch in each bin. As shown in Figure 6 (a), SABL achieves consistently higher



14 J. Wang et al.

0.5

0.6

0.7

0.8

0.9

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Input IoU

Faster R-CNN w/ SABL

Faster R-CNN

Output IoU

(a) Average IoU

0

20

40

60

80

100

120

140

160

180

>= 0.5 >= 0.6 >= 0.7 >= 0.8 >= 0.9

IoU Threshold

Positive Bounding Box per Image

≥ 0.5 ≥ 0.6 ≥ 0.7 ≥ 0.8 ≥ 0.9

Faster R-CNN w/ SABL

Faster R-CNN

(b) Positive Bounding Box Number

Fig. 6. Analysis of bounding boxes predicted by Faster R-CNN and Faster R-CNN w/
SABL without NMS. (a) Average IoU of proposals before and after localization branch.
(b) Number of positive boxes per image with different IoU threshold after localization

IoU than the bounding box regression baseline in all bins, which reveals that
both low and high quality proposals are more precisely localized.

Furthermore, in Figure 6 (b) we compare the IoU distribution of proposals after
the localization branch. Specifically, we calculate the average number of positive
boxes per image with different IoU threshold (e.g., IoU ≥ 0.5). SABL results
in more positive boxes under all thresholds, especially for high IoU thresholds,
e.g., ≥ 0.9. It contributes to the significant gains of Faster R-CNN w/ SABL on
AP90 compared to Faster R-CNN. We also notice that although SABL achieves
a higher overall AP and better localization precision across all IoU thresholds,
AP50 is slightly lower. The situation of higher overall AP but lower AP50, also
occurs in a number of detectors [20,29,41] that aim at better localization. AP
is affected by not only the localization quality but classification accuracy, and
AP50 is more sensitive to classification since it does not require bounding boxes
with high IoU. Localization and classification branches are jointly trained, and
SABL is more optimized for the former. To improve AP50, other efforts to obtain
a higher classification accuracy are required, e.g., reducing misclassified boxes,
which is beyond the discussion and target of our method.

5 Conclusion

In this work, we propose Side-Aware Boundary Localization (SABL) to
replace the conventional bounding box regression. We extract side-aware features
which focus on the content of boundaries for localization. A lightweight two-step
bucketing scheme is proposed to locate objects accurately based on the side-aware
features. We also introduce a rescoring mechanism to leverage the bucketing
confidence to keep high-quality bounding boxes. The proposed SABL exhibits
consistent and significant performance gains on various object detection pipelines.



Side-Aware Boundary Localization for More Precise Object Detection 15

Acknowledgement. This work is partially supported by the SenseTime Col-
laborative Grant on Large-scale Multi-modality Analysis (CUHK Agreement
No. TS1610626 & No. TS1712093), the General Research Fund (GRF) of Hong
Kong (No. 14203518 & No. 14205719), SenseTime-NTU Collaboration Project
and NTU NAP.

References

1. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection.
In: CVPR (2018)

2. Cao, Y., Chen, K., Loy, C.C., Lin, D.: Prime sample attention in object detection.
In: CVPR (2020)

3. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J.,
Ouyang, W., Change Loy, C., Lin, D.: Hybrid task cascade for instance segmentation.
In: CVPR (2019)

4. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J.,
Ouyang, W., Change Loy, C., Lin, D.: Hybrid task cascade for instance segmentation.
In: CVPR (2019)

5. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,
Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R.,
Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: MMDetection:
Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155
(2019)

6. Chen, K., Wang, J., Yang, S., Zhang, X., Xiong, Y., Loy, C.C., Lin, D.: Optimizing
video object detection via a scale-time lattice. In: CVPR (2018)

7. Choi, J., Chun, D., Kim, H., Lee, H.J.: Gaussian YOLOv3: An accurate and fast
object detector using localization uncertainty for autonomous driving. In: ICCV
(2019)

8. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation strategies from data. In: CVPR (2019)

9. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully
convolutional networks. In: NIPS (2016)

10. Fang, H.S., Sun, J., Wang, R., Gou, M., Li, Y.L., Lu, C.: Instaboost: Boosting
instance segmentation via probability map guided copy-pasting. In: ICCV (2019)

11. Ghiasi, G., Lin, T., Pang, R., Le, Q.V.: NAS-FPN: learning scalable feature pyramid
architecture for object detection. CoRR abs/1904.07392 (2019), http://arxiv.
org/abs/1904.07392

12. Gidaris, S., Komodakis, N.: LocNet: Improving localization accuracy for object
detection. In: CVPR (2016)

13. Girshick, R.: Fast R-CNN. In: ICCV (2015)

14. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate
object detection and semantic segmentation. In: CVPR (2014)

15. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron. https:
//github.com/facebookresearch/detectron (2018)

16. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: ICCV (2017)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

http://arxiv.org/abs/1904.07392
http://arxiv.org/abs/1904.07392
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron


16 J. Wang et al.

19. Huang, Q., Xiong, Y., Lin, D.: Unifying identification and context learning for
person recognition. In: CVPR (2018)

20. Jiang, B., Luo, R., Mao, J., Xiao, T., Jiang, Y.: Acquisition of localization confidence
for accurate object detection. In: ECCV (2018)

21. Kong, T., Sun, F., Liu, H., Jiang, Y., Shi, J.: FoveaBox: Beyond anchor-based
object detector. CoRR abs/1904.03797 (2019)

22. Kong, T., Sun, F., Tan, C., Liu, H., Huang, W.: Deep feature pyramid reconfiguration
for object detection. In: ECCV (2018)

23. Law, H., Deng, J.: CornerNet: Detecting objects as paired keypoints. In: ECCV
(2018)

24. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature
pyramid networks for object detection. In: CVPR (2017)

25. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV (2017)

26. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014)

27. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance
segmentation. In: CVPR (2018)

28. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD:
single shot multibox detector. In: ECCV (2016)

29. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid R-CNN. In: CVPR (2019)
30. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid r-cnn plus: Faster and better. arXiv

preprint arXiv:1906.05688 (2019)
31. Najibi, M., Rastegari, M., Davis, L.S.: G-cnn: an iterative grid based object detector.

In: CVPR (2016)
32. Pan, X., Zhan, X., Shi, J., Tang, X., Luo, P.: Switchable whitening for deep

representation learning. In: ICCV (2019)
33. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: Towards

balanced learning for object detection. In: CVPR (2019)
34. Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K., Yu, G., Sun, J.: MegDet:

A large mini-batch object detector (2018)
35. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified,

real-time object detection. In: CVPR (2016)
36. Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. In: CVPR (2017)
37. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object

detection with region proposal networks. In: NIPS (2015)
38. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection

from point cloud. In: CVPR (2019)
39. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: Fully convolutional one-stage object

detection. CoRR abs/1904.01355 (2019)
40. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: Carafe: Content-aware

reassembly of features. In: ICCV (2019)
41. Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D.: Region proposal by guided

anchoring. In: CVPR (2019)
42. Wu, Y., He, K.: Group normalization. In: ECCV (2018)
43. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations

for deep neural networks. In: CVPR (2017)
44. Xiong, Y., Huang, Q., Guo, L., Zhou, H., Zhou, B., Lin, D.: A graph-based framework

to bridge movies and synopses. In: ICCV (2019)
45. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation for

object detection. In: ICCV (2019)



Side-Aware Boundary Localization for More Precise Object Detection 17

46. Zhan, X., Pan, X., Dai, B., Liu, Z., Lin, D., Loy, C.C.: Self-supervised scene
de-occlusion. In: CVPR (2020)

47. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network
for object detection. In: CVPR (2018)

48. Zhang, W., Zhou, H., Sun, S., Wang, Z., Shi, J., Loy, C.C.: Robust multi-modality
multi-object tracking. In: ICCV (2019)

49. Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: Freeanchor: Learning to match anchors
for visual object detection. In: NIPS

50. Zhao, Q., Sheng, T., Wang, Y., Tang, Z., Chen, Y., Cai, L., Ling, H.: M2Det: a
single-shot object detector based on multi-level feature pyramid network. In: AAAI
(2019)

51. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. In: arXiv preprint
arXiv:1904.07850 (2019)

52. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot
object detection. In: CVPR (2019)



18 J. Wang et al.

A Extensions of SABL in COCO Challenge 2019

Here we demonstrate the whole system with bells and whistles in COCO Challenge
2019, which won the detection track of no external data. Applying SABL to Mask
R-CNN with ResNet-50 [17] achieves 40.0% APbox and 35.0% APmask. Then we
adopt Hybrid Task Cascade (HTC) [4] with the proposed CAFA (in Appendix
B) in PAFPN [27] and CARAFE [40] in Mask Head. It achieves 44.3% APbox and
38.4% APmask compared with 42.1% APbox and 37.3% APmask of HTC baseline.
Our overall system is trained without involving external instance-level annotated
data during training. To be specific, it is trained on COCO2017 training split
(instance segmentation and stuff annotations) as in [4]. Here we also list other
steps and additional modules we used to obtain the final performance. The
step-by-step gains brought by different components are illustrated in Table 9.

SyncBN. We use Synchronized Batch Normalization [27,34] in the backbone
and heads.

SW. We adopt Switchable Whitening (SW) [32] in the backbone and FPN
following the original paper.

DCNv2. We appply Deformable Convolution v2 [52] in the last three stage
(from res3 to res5) of the backbone.

Multi-scale Training. We adopt multi-scale training. The scale of short edge
is randomly sampled from [400, 1400] per iteration and the scale of long edge is
fixed as 1600. The detectors are trained with 20 epoches and the learning rate is
decreased by 0.1 after 16 and 19 epoches, respectively.

SENet-154 with SW. We tried different larger backbones. SENet-154 [18] with
Switchable Whitening (SW) [32] achieves the best single model performance.

Stronger Augmentation. We adopt Instaboost [10] as the sixth policy of
AutoAugment [8]. Each policy has the same probability to be used for data
augmentation during training procedure. The detectors are trained with 48
epoches with such stronger augmentation, and the learning rate is decreased by
0.1 after 40 and 45 epoches, respectively.

Multi-scale Testing. We use 5 scales as well as horizontal flip at test time before
ensemble. The testing scales are (600, 900), (800, 1200), (1000, 1500), (1200, 1800),
(1400, 2100).

Ensemble. We use ensemble of models based on five backbone networks. We
pretrain SENet-154 w/ SW and SE-ResNext-101 w/ SW on ImageNet-1K im-
age classification dataset and use pretrained weights of ResNeXt-101 32× 32d,
ResNeXt-101 32× 16d [43] and ResNeXt-101 32× 8d [43] provided by PyTorch 1.

As shown in Table 10, on COCO 2017 test-dev dataset, our method finally
achieves 57.8% APbox, 51.3% APmask with multiple model ensemble and 56.0%
APbox, 49.4% APmask with single model. Our result outperforms the 2018 COCO
Winner Entry by 1.7% APbox and 2.3% APmask, respectively.

1 https://pytorch.org/hub/facebookresearch WSL-Images resnext/

https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/


Side-Aware Boundary Localization for More Precise Object Detection 19

Table 9. Step by Step results of our method on COCO2017 val dataset.

Methods scheduler APbox APmask

Mask R-CNN 1x 37.3 34.2
+ SABL 1x 40.0 (+2.7) 35.0 (+0.8)
+ HTC 1x 42.9 (+2.9) 37.4 (+2.4)

+ CAFA&CARAFE 1x 44.3 (+1.4) 38.4 (+1.0)
+ SyncBN 1x 45.8 (+1.5) 39.9 (+1.5)

+ SW 1x 46.1 (+0.3) 40.0 (+0.1)
+ Backbone DCNv2 1x 48.2 (+2.1) 41.7 (+1.7)

+ Mask Scoring 1x 48.3 (+0.1) 42.4 (+0.7)
+ MS-Training 20e 50.2 (+1.9) 44.5 (+2.1)
+ SE154-SW 20e 52.7 (+2.5) 46.1 (+1.6)

+ AutoAug&InstaBoost 4x 54.0 (+1.3) 47.1 (+1.0)
+ Multi-Scale Testing - 55.3 (+1.3) 48.4 (+1.3)

+ Ensemble - 57.2 (+1.9) 50.5 (+2.1)

Table 10. Results with bells and whistles on COCO2017 test-dev dataset.

Methods APbox APmask

2018 Winners Single Model 54.1 47.4
Ours Single Model 56.0 49.4

2018 Winners Ensemble [4] 56.0 49.0
Ours 57.8 51.3

B Content-Aware Feature Aggregation (CAFA)

Many studies [11,22,24,27,33] have investigated the architecture design for gener-
ating the feature pyramid The approach for fusing low- and high-level features,
however, remains much less explored. A typical way for fusing features across
different scales is by näıve downsampling or upsampling followed by element-wise
summation. While this method is simple, it ignores the underlying content of
each scale during the fusion process.

Considering this issue, we propose the Content-Aware Feature Aggrega-
tion (CAFA) module that facilitates effective fusion and aggregation of multi-scale
features in a feature pyramid. To encourage content-aware upsampling, we develop
CAFA based on CARAFE [40], a generic operator which is proposed for replacing
the conventional upsampling operator. Different from CARAFE, we perform
Deformable Convolution v2 [52] after CARAFE while before summing up the
upsampled feature maps with the lateral feature maps (see Figure 7). Further,
the conventional convolution layers are replaced by Deformable Convolution
v2 [52] for downsampling. Thanks to this design, CAFA enjoys a larger receptive
field and gains improved performance in adapting to instance-specific contents.

As shown in Table 11, we study the effectiveness of CAFA combined with
FPN [24] and PAFPN [27] in Mask R-CNN [16]. CAFA brings 1.6% APbox,



20 J. Wang et al.

1x1 
conv

2x Up

1x1 
conv

DCNv2

CARAFE 3x3
conv

3x3 conv 
stride2

3x3
conv

3x3 DCNv2
stride2

Fig. 7. Modification by CAFA on PAFPN [27]. We use CARAFE [40] and DCNv2 [52]
during upsampling and use DCNv2 [52] for downsampling.

Table 11. Effectiveness of CAFA combined with FPN [24] and PAFPN [27] in Mask
R-CNN [16].

Method Modification box AP mask AP

FPN
Baseline 37.3 34.2
+ CAFA 38.9 35.3

PAFPN
Baseline 37.7 34.3
+ CAFA 40.0 36.2

1.1% APmask gains on FPN, and 2.3% APbox, 1.9% APmask gains on PAFPN,
respectively.

We further evaluate CAFA via comparing it with NAS-FPN on RetinaNet
and it achieves compatible results (39.2% APbox v.s. 39.5% APbox on COCO2017
val dataset at 640× 640 scale). While NAS-FPN uses 7 pyramid networks, our
CAFA with PAFPN only uses 2 pyramid networks with much simpler pathways
(one top-down and one bottom-up) among pyramidal features.

C Visual Results Comparison

As illustrated in Figure 8, we provide some object detection results comparison
between Faster R-CNN [37] baseline and Faster R-CNN w/ SABL on COCO
2017 [26] val. ResNet-101 w/ FPN backbone and 1x training scheduler are adopted
in both methods. Faster R-CNN w/ SABL shows more precise localization results
than the baseline.



Side-Aware Boundary Localization for More Precise Object Detection 21

Faster R-CNN

Faster R-CNN w/ SABL

Faster R-CNN

Faster R-CNN w/ SABL

Faster R-CNN

Faster R-CNN w/ SABL

Fig. 8. Comparison of object detection results between Faster R-CNN baseline and
Faster R-CNN w/ SABL on COCO 2017 val. ResNet-101 w/ FPN backbone and 1x
training schedule are adopted in both methods. Faster R-CNN w/ SABL shows more
precise localization results than the baseline.


