Abstract
In this paper, we propose an efficient and effective dense hybrid recurrent multi-view stereo net with dynamic consistency checking, namely \(D^{2}\)HC-RMVSNet, for accurate dense point cloud reconstruction. Our novel hybrid recurrent multi-view stereo net consists of two core modules: 1) a light DRENet (Dense Reception Expanded) module to extract dense feature maps of original size with multi-scale context information, 2) a HU-LSTM (Hybrid U-LSTM) to regularize 3D matching volume into predicted depth map, which efficiently aggregates different scale information by coupling LSTM and U-Net architecture. To further improve the accuracy and completeness of reconstructed point clouds, we leverage a dynamic consistency checking strategy instead of prefixed parameters and strategies widely adopted in existing methods for dense point cloud reconstruction. In doing so, we dynamically aggregate geometric consistency matching error among all the views. Our method ranks \(1^{st}\) on the complex outdoor Tanks and Temples benchmark over all the methods. Extensive experiments on the in-door DTU dataset show our method exhibits competitive performance to the state-of-the-art method while dramatically reduces memory consumption, which costs only \(19.4\%\) of R-MVSNet memory consumption. The codebase is available at https://github.com/yhw-yhw/D2HC-RMVSNet.
J. Yan, Z. Wei and H. Yi—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altizure. https://www.altizure.com/
Pix4d. https://pix4d.com/
Aanæs, H., Jensen, R.R., Vogiatzis, G., Tola, E., Dahl, A.B.: Large-scale data for multiple-view stereopsis. IJCV 120(2), 153–168 (2016)
Chen, R., Han, S., Xu, J., Su, H.: Point-based multi-view stereo network. arXiv preprint arXiv:1908.04422 (2019)
Chen, R., Han, S., Xu, J., Su, H.: Point-based multi-view stereo network. In: ICCV (2019)
Ding, M., et al.: Learning depth-guided convolutions for monocular 3D object detection. In: CVPR (2020)
Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)
Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: learning to predict new views from the world’s imagery. In: CVPR (2016)
Galliani, S., Lasinger, K., Schindler, K.: Massively parallel multiview stereopsis by surface normal diffusion. In: ICCV (2015)
Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for high-resolution multi-view stereo and stereo matching. arXiv preprint arXiv:1912.06378 (2019)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)
Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: DeepMVS: learning multi-view stereopsis. In: CVPR (2018)
Im, S., Jeon, H.G., Lin, S., Kweon, I.S.: DpsNET: end-to-end deep plane sweep stereo. arXiv preprint arXiv:1905.00538 (2019)
Ji, M., Gall, J., Zheng, H., Liu, Y., Fang, L.: SurfaceNet: an end-to-end 3D neural network for multiview stereopsis. In: ICCV (2017)
Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: ICCV (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. TOG 36(4), 78 (2017)
Lhuillier, M., Quan, L.: A quasi-dense approach to surface reconstruction from uncalibrated images. PAMI 27(3), 418–433 (2005)
Luo, K., Guan, T., Ju, L., Huang, H., Luo, Y.: P-MVSNet: learning patch-wise matching confidence aggregation for multi-view stereo. In: ICCV (2019)
Moulon, P., Monasse, P., Marlet, R., et al.: OpenMVG. an open multiple view geometry library (2014)
Paszke, A., et al.: Automatic differentiation in PyTorch. In: NeurIPS Autodiff Workshop (2017)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Schönberger, J.L., Zheng, E., Frahm, J.M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: ECCV (2016)
Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection for unstructured multi-view stereo. In: ECCV (2016)
Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR (2006)
Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: CVPR (2008)
Tola, E., Strecha, C., Fua, P.: Efficient large-scale multi-view stereo for ultra high-resolution image sets. Mach. Vis. Appl. 23(5), 903–920 (2012)
Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NeurIPS, pp. 802–810 (2015)
Xu, Q., Tao, W.: Multi-scale geometric consistency guided multi-view stereo. In: CVPR (2019)
Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSnet: depth inference for unstructured multi-view stereo. In: ECCV (2018)
Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSnet: depth inference for unstructured multi-view stereo. In: ECCV (2018)
Yao, Y., et al.: BlendedMVS: a large-scale dataset for generalized multi-view stereo networks. arXiv preprint arXiv:1911.10127 (2019)
Yi, H., et al.: MMFace: a multi-metric regression network for unconstrained face reconstruction. In: CVPR (2019)
Yi, H., et al.: Pyramid multi-view stereo net with self-adaptive view aggregation. arXiv preprint arXiv:1912.03001 (2019)
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
Acknowledgements
This project was supported by the National Key R&D Program of China (No. 2017YFB1002705, No. 2017YFB1002601) and NSFC of China (No. 61632003, No. 61661146002, No. 61872398).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 80238 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, J. et al. (2020). Dense Hybrid Recurrent Multi-view Stereo Net with Dynamic Consistency Checking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12349. Springer, Cham. https://doi.org/10.1007/978-3-030-58548-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-58548-8_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58547-1
Online ISBN: 978-3-030-58548-8
eBook Packages: Computer ScienceComputer Science (R0)