Abstract
Video propagation is a fundamental problem in video processing where guidance frame predictions are propagated to guide predictions of the target frame. Previous research mainly treats the previous adjacent frame as guidance, which, however, could make the propagation vulnerable to occlusion, large motion and inaccurate information in the previous adjacent frame. To tackle this challenge, we propose a memory selection network, which learns to select suitable guidance from all previous frames for effective and robust propagation. Experimental results on video object segmentation and video colorization tasks show that our method consistently improves performance and can robustly handle challenging scenarios in video propagation.
R. Wu and H. Lin—Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
YouTube-VOS online server returns a TEXT file containing the per frame IoU for each submission.
References
Bao, L., Wu, B., Liu, W.: CNN in MRF: video object segmentation via inference in a CNN-based higher-order spatio-temporal MRF. In: CVPR (2018)
Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: CVPR (2017)
Chai, Y.: Patchwork: a patch-wise attention network for efficient object detection and segmentation in video streams. In: ICCV (2019)
Cheng, J., Tsai, Y.H., Hung, W.C., Wang, S., Yang, M.H.: Fast and accurate online video object segmentation via tracking parts. In: CVPR (2018)
Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: Segflow: joint learning for video object segmentation and optical flow. In: ICCV (2017)
Ci, H., Wang, C., Wang, Y.: Video object segmentation by learning location-sensitive embeddings. In: ECCV (2018)
Duarte, K., Rawat, Y.S., Shah, M.: Capsulevos: semi-supervised video object segmentation using capsule routing. In: ICCV (2019)
Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Scandinavian conference on Image analysis (2003)
Griffin, B.A., Corso, J.J.: Bubblenets: learning to select the guidance frame in video object segmentation by deep sorting frames. In: CVPR (2019)
He, K., Sun, J., Tang, X.: Guided image filtering. TPAMI (2013)
Hu, Y.T., Huang, J.B., Schwing, A.: Maskrnn: instance level video object segmentation. In: NeurIPS (2017)
Hu, Y.T., Huang, J.B., Schwing, A.G.: Videomatch: matching based video object segmentation. In: ECCV (2018)
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)
Jampani, V., Gadde, R., Gehler, P.V.: Video propagation networks. In: CVPR (2017)
Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: CVPR (2019)
Khoreva, A., Benenson, R., Ilg, E., Brox, T., Schiele, B.: Lucid data dreaming for multiple object tracking. arXiv:1703.09554 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: TOG (2004)
Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. TPAMI (2008)
Li, X., et al.: Video object segmentation with re-identification. In: The 2017 DAVIS Challenge on Video Object Segmentation-CVPR Workshops (2017)
Li, X., Change Loy, C.: Video object segmentation with joint re-identification and attention-aware mask propagation. In: ECCV (2018)
Li, Z., Chen, Q., Koltun, V.: Interactive image segmentation with latent diversity. In: CVPR (2018)
Liu, S., De Mello, S., Gu, J., Zhong, G., Yang, M.H., Kautz, J.: Learning affinity via spatial propagation networks. In: NeurIPS (2017)
Liu, S., Zhong, G., De Mello, S., Gu, J., Yang, M.H., Kautz, J.: Switchable temporal propagation network. arXiv:1804.08758 (2018)
Luiten, J., Voigtlaender, P., Leibe, B.: Premvos: proposal-generation, refinement and merging for video object segmentation. In: ACCV (2018)
Maninis, K.K., et al.: Video object segmentation without temporal information. TPAMI 41, 1515–1530 (2018)
Miksik, O., Munoz, D., Bagnell, J.A., Hebert, M.: Efficient temporal consistency for streaming video scene analysis. In: ICRA (2013)
Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: ICCV (2019)
Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: CVPR (2017)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)
Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 davis challenge on video object segmentation. arXiv:1704.00675 (2017)
Rick Chang, J.H., Frank Wang, Y.C.: Propagated image filtering. In: CVPR (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with visual memory. In: ICCV (2017)
Ventura, C., Bellver, M., Girbau, A., Salvador, A., Marques, F., Giro-i Nieto, X.: Rvos: end-to-end recurrent network for video object segmentation. In: CVPR (2019)
Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: Feelvos: fast end-to-end embedding learning for video object segmentation. In: CVPR (2019)
Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for video object segmentation. arXiv:1706.09364 (2017)
Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking emerges by colorizing videos. In: ECCV (2018)
Wug Oh, S., Lee, J.Y., Sunkavalli, K., Joo Kim, S.: Fast video object segmentation by reference-guided mask propagation. In: CVPR (2018)
Xu, K., Wen, L., Li, G., Bo, L., Huang, Q.: Spatiotemporal CNN for video object segmentation. In: CVPR (2019)
Xu, N., et al.: Youtube-VOS: Sequence-to-sequence video object segmentation. In: ECCV (2018)
Xu, N., et al.: Youtube-VOS: a large-scale video object segmentation benchmark. arXiv:1809.03327 (2018)
Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: CVPR (2018)
Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending. TIP 15, 1120–1129 (2006)
Zeng, X., Liao, R., Gu, L., Xiong, Y., Fidler, S., Urtasun, R.: DMM-net: Differentiable mask-matching network for video object segmentation. In: ICCV (2019)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV (2016)
Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. TOG (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, R., Lin, H., Qi, X., Jia, J. (2020). Memory Selection Network for Video Propagation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-58555-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58554-9
Online ISBN: 978-3-030-58555-6
eBook Packages: Computer ScienceComputer Science (R0)