Abstract
Determining optimal target tooth arrangements is a key step of treatment planning in digital orthodontics. Existing practice for specifying the target tooth arrangement involves tedious manual operations with the outcome quality depending heavily on the experience of individual specialists, leading to inefficiency and undesirable variations in treatment results. In this work, we proposed a learning-based method for fast and automatic tooth arrangement. To achieve this, we formulate the tooth arrangement task as a novel structured 6-DOF pose prediction problem and solve it by proposing a new neural network architecture to learn from a large set of clinical data that encode successful orthodontic treatment cases. Our method has been validated with extensive experiments and shows promising results both qualitatively and quantitatively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrews, L.F.: The six keys to normal occlusion. Am. J. Orthod. 62(3), 296–309 (1972)
Angle, E.H.: Classification of malocclusion. Dent. Cosmos. 41, 350–375 (1899)
Aubry, M., Maturana, D., Efros, A.A., Russell, B.C., Sivic, J.: Seeing 3D chairs: exemplar part-based 2D–3D alignment using a large dataset of cad models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3762–3769 (2014)
Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)
Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6D object pose estimation using 3D object coordinates. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 536–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_35
Chang, Y.B., Xia, J.J., Gateno, J., Xiong, Z., Zhou, X., Wong, S.T.: An automatic and robust algorithm of reestablishment of digital dental occlusion. IEEE Trans. Med. Imaging 29(9), 1652–1663 (2010)
Collet, A., Martinez, M., Srinivasa, S.S.: The MOPED framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(10), 1284–1306 (2011)
Dai, N., Yu, X., Fan, Q., Yuan, F., Liu, L., Sun, Y.: Complete denture tooth arrangement technology driven by a reconfigurable rule. PLoS One 13(6), e0198252 (2018)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)
Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., Hanrahan, P.: Example-based synthesis of 3D object arrangements. ACM Trans. Graph. (TOG) 31(6) (2012). Article no. 135
Gao, L., et al.: SDM-NET: deep generative network for structured deformable mesh. ACM Trans. Graph. (TOG) 38(6) (2019). Article no. 243
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: AtlasNet: Apapier-Mâché approach to learning 3D surfacegeneration. arXiv preprint arXiv:1802.05384 (2018)
Guerrero, P., Jeschke, S., Wimmer, M., Wonka, P.: Learning shape placements by example. ACM Trans. Graph. (TOG) 34(4) (2015). Article no. 108
Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42
Hwang, J.J., Azernikov, S., Efros, A.A., Yu, S.X.: Learning beyond human expertise with generative models for dental restorations. arXiv preprint arXiv:1804.00064 (2018)
Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: GRASS: generative recursive autoencoders for shape structures. ACM Trans. Graph. (TOG) 36(4) (2017). Article no. 52
Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: deep iterative matching for 6d pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 683–698 (2018)
Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)
Lian, C., et al.: MeshSNet: deep multi-scale mesh feature learning for end-to-end tooth labeling on 3D dental surfaces. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 837–845. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_93
Majerowicz, L., Shamir, A., Sheffer, A., Hoos, H.H.: Filling your shelves: synthesizing diverse style-preserving artifact arrangements. IEEE Trans. Vis. Comput. Graph. 20(11), 1507–1518 (2013)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Mo, K., et al.: StructureNet: hierarchical graph networks for 3D shape generation. arXiv preprint arXiv:1908.00575 (2019)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. arXiv preprint arXiv:1901.05103 (2019)
Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6dof pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4561–4570 (2019)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3D object detection from RGB-D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 918–927 (2018)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)
Song, S., Xiao, J.: Sliding shapes for 3D object detection in depth images. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 634–651. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_41
Song, S., Xiao, J.: Deep sliding shapes for amodal 3D object detection in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 808–816 (2016)
Sung, M., Su, H., Kim, V.G., Chaudhuri, S., Guibas, L.: ComplementMe: weakly-supervised component suggestions for 3D modeling. ACM Trans. Graph. (TOG) 36(6) (2017). Article no. 226
Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2088–2096 (2017)
Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 292–301 (2018)
Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. arXiv preprint arXiv:1809.10790 (2018)
Wang, C., et al.: DenseFusion: 6D object pose estimation by iterative dense fusion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3343–3352 (2019)
Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)
Wang, K., Lin, Y.A., Weissmann, B., Savva, M., Chang, A.X., Ritchie, D.: PlanIT: planning and instantiating indoor scenes with relation graph and spatial prior networks. ACM Trans. Graph. (TOG) 38(4) (2019). Article no. 132
Wang, K., Savva, M., Chang, A.X., Ritchie, D.: Deep convolutional priors for indoor scene synthesis. ACM Transactions on Graphics (TOG) 37(4) (2018). Article no. 70
Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)
Xu, D., Anguelov, D., Jain, A.: PointFusion: deep sensor fusion for 3D bounding box estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2018)
Xu, X., Liu, C., Zheng, Y.: 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans. Vis. Comput. Graph. 25(7), 2336–2348 (2018)
Yu, L.F., Yeung, S.K., Tang, C.K., Terzopoulos, D., Chan, T.F., Osher, S.: Make it home: automatic optimization of furniture arrangement. ACM Trans. Graph. 30(4) (2011). Article no. 86
Zanjani, F.G., et al.: Mask-MCNet: instance segmentation in 3D point cloud of intra-oral scans. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 128–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_15
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)
Zhu, M., et al.: Single image 3D object detection and pose estimation for grasping. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3936–3943. IEEE (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wei, G. et al. (2020). TANet: Towards Fully Automatic Tooth Arrangement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-58555-6_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58554-9
Online ISBN: 978-3-030-58555-6
eBook Packages: Computer ScienceComputer Science (R0)