Skip to main content

Learning to Detect Open Classes for Universal Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Included in the following conference series:

Abstract

Universal domain adaptation (UniDA) transfers knowledge between domains without any constraint on the label sets, extending the applicability of domain adaptation in the wild. In UniDA, both the source and target label sets may hold individual labels not shared by the other domain. A de facto challenge of UniDA is to classify the target examples in the shared classes against the domain shift. A more prominent challenge of UniDA is to mark the target examples in the target-individual label set (open classes) as “unknown”. These two entangled challenges make UniDA a highly under-explored problem. Previous work on UniDA focuses on the classification of data in the shared classes and uses per-class accuracy as the evaluation metric, which is badly biased to the accuracy of shared classes. However, accurately detecting open classes is the mission-critical task to enable real universal domain adaptation. It further turns UniDA problem into a well-established close-set domain adaptation problem. Towards accurate open class detection, we propose Calibrated Multiple Uncertainties (CMU) with a novel transferability measure estimated by a mixture of uncertainty quantities in complementation: entropy, confidence and consistency, defined on conditional probabilities calibrated by a multi-classifier ensemble model. The new transferability measure accurately quantifies the inclination of a target example to the open classes. We also propose a novel evaluation metric called H-score, which emphasizes the importance of both accuracies of the shared classes and the “unknown” class. Empirical results under the UniDA setting show that CMU outperforms the state-of-the-art domain adaptation methods on all the evaluation metrics, especially by a large margin on the H-score.

B. Fu and Z. Cao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busto, P.P., Iqbal, A., Gall, J.: Open set domain adaptation for image and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  2. Cao, Z., Long, M., Wang, J., Jordan, M.I.: Partial transfer learning with selective adversarial networks. In: CVPR, June 2018

    Google Scholar 

  3. Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 139–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_9

    Chapter  Google Scholar 

  4. Cao, Z., You, K., Long, M., Wang, J., Yang, Q.: Learning to transfer examples for partial domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2985–2994 (2019)

    Google Scholar 

  5. Chen, Q., Liu, Y., Wang, Z., Wassell, I., Chetty, K.: Re-weighted adversarial adaptation network for unsupervised domain adaptation. In: CVPR, pp. 7976–7985 (2018)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  8. Ganin, Y., et al.: Domain-adversarial training of neural networks. JMLR 17, 59:1–59:35 (2016)

    Google Scholar 

  9. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1321–1330. JMLR. org (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  11. Hu, J., Wang, C., Qiao, L., Zhong, H., Jing, Z.: Multi-weight partial domain adaptation. In: The British Machine Vision Conference (BMVC) (2019)

    Google Scholar 

  12. Hu, L., Kan, M., Shan, S., Chen, X.: Duplex generative adversarial network for unsupervised domain adaptation. In: CVPR, June 2018

    Google Scholar 

  13. Hu, Y., Stumpfe, D., Bajorath, J.: Computational exploration of molecular scaffolds in medicinal chemistry: miniperspective. J. Med. Chem. 59(9), 4062–4076 (2016)

    Article  Google Scholar 

  14. Kang, G., Zheng, L., Yan, Y., Yang, Y.: Deep adversarial attention alignment for unsupervised domain adaptation: the benefit of target Expectation maximization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 420–436. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_25

    Chapter  Google Scholar 

  15. Konstantinos, B., Nathan, S., David, D., Dumitru, E., Dilip, K.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR, pp. 95–104 (2017)

    Google Scholar 

  16. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp. 6402–6413 (2017)

    Google Scholar 

  17. Lian, Q., Li, W., Chen, L., Duan, L.: Known-class aware self-ensemble for open set domain adaptation. arXiv preprint arXiv:1905.01068 (2019)

  18. Liu, H., Cao, Z., Long, M., Wang, J., Yang, Q.: Separate to adapt: open set domain adaptation via progressive separation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  19. Liu, Y.C., Yeh, Y.Y., Fu, T.C., Wang, S.D., Chiu, W.C., Frank Wang, Y.C.: Detach and adapt: learning cross-domain disentangled deep representation. In: CVPR, June 2018

    Google Scholar 

  20. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  21. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional domain adversarial network. In: NeurIPS (2018)

    Google Scholar 

  22. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NeurIPS, pp. 136–144 (2016)

    Google Scholar 

  23. Maria Carlucci, F., Porzi, L., Caputo, B., Ricci, E., Rota Bulo, S.: Autodial: automatic domain alignment layers. In: ICCV, October 2017

    Google Scholar 

  24. Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: CVPR, June 2018

    Google Scholar 

  25. Panareda Busto, P., Gall, J.: Open set domain adaptation. In: ICCV, October 2017

    Google Scholar 

  26. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1406–1415 (2019)

    Google Scholar 

  27. Peng, X., et al.: VisDA: a synthetic-to-real benchmark for visual domain adaptation. In: CVPR Workshops, pp. 2021–2026 (2018)

    Google Scholar 

  28. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  29. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, June 2018

    Google Scholar 

  30. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 156–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_10

    Chapter  Google Scholar 

  31. Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt: aligning domains using generative adversarial networks. In: CVPR, June 2018

    Google Scholar 

  32. Snoek, J., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: Advances in Neural Information Processing Systems, pp. 13969–13980 (2019)

    Google Scholar 

  33. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  34. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  35. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR (2017)

    Google Scholar 

  36. Vittorio, F., Alina, K., Rodrigo, B., Victor, G., Matteo, M.: Open images challenge 2019 (2019). https://storage.googleapis.com/openimages/web/challenge2019.html

  37. Volpi, R., Morerio, P., Savarese, S., Murino, V.: Adversarial feature augmentation for unsupervised domain adaptation. In: CVPR, June 2018

    Google Scholar 

  38. Wu, A., Nowozin, S., Meeds, E., Turner, R., Hernández-Lobato, J., Gaunt, A.: Deterministic variational inference for robust Bayesian neural networks. In: 7th International Conference on Learning Representations, ICLR 2019 (2019)

    Google Scholar 

  39. Wu, Z., et al.: Moleculenet: a benchmark for molecular machine learning. Chem. Sci. 9(2), 513–530 (2018)

    Article  Google Scholar 

  40. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: ICML, pp. 5423–5432 (2018)

    Google Scholar 

  41. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  42. You, K., Wang, X., Long, M., Jordan, M.: Towards accurate model selection in deep unsupervised domain adaptation. In: ICML, pp. 7124–7133 (2019)

    Google Scholar 

  43. Zhang, H., Li, A., Han, X., Chen, Z., Zhang, Y., Guo, Y.: Improving open set domain adaptation using image-to-image translation. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 1258–1263. IEEE (2019)

    Google Scholar 

  44. Zhang, J., Ding, Z., Li, W., Ogunbona, P.: Importance weighted adversarial nets for partial domain adaptation. In: CVPR, June 2018

    Google Scholar 

  45. Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: CVPR, June 2018

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of China (61772299, 71690231), and China University S&T Innovation Plan Guided by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsheng Long .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2214 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, B., Cao, Z., Long, M., Wang, J. (2020). Learning to Detect Open Classes for Universal Domain Adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics