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Abstract. We present a conceptually simple, flexible and effective frame-
work for weight generating networks. Our approach is general that unifies
two current distinct and extremely effective SENet and CondConv into
the same framework on weight space. The method, called WeightNet,
generalizes the two methods by simply adding one more grouped fully-
connected layer to the attention activation layer. We use the WeightNet,
composed entirely of (grouped) fully-connected layers, to directly out-
put the convolutional weight. WeightNet is easy and memory-conserving
to train, on the kernel space instead of the feature space. Because of
the flexibility, our method outperforms existing approaches on both Im-
ageNet and COCO detection tasks, achieving better Accuracy-FLOPs
and Accuracy-Parameter trade-offs. The framework on the flexible weight
space has the potential to further improve the performance. Code is avail-
able at https://github.com/megvii-model/WeightNet.

Keywords: CNN architecture design, weight generating network, con-
ditional kernel

1 Introduction

Designing convolution weight is a key issue in convolution networks (CNNs). The
weight-generating methods [14,6,24] using a network, which we call weight net-
works, provide an insightful neural architecture design space. These approaches
are conceptually intuitive, easy and efficient to train. Our goal in this work is to
present a simple and effective framework, in the design space of weight networks,
inspired by the rethinking of recent effective conditional networks.

Conditional networks (or dynamic networks)[2,11,38], which use extra sample-
dependent modules to conditionally adjust the network, have achieved great
success. SENet [11], an effective and robust attention module, helps many tasks
achieve state-of-the-art results [9,31,32]. Conditionally Parameterized Convolu-
tion (CondConv) [38] uses over-parameterization to achieve great improvements
but maintains the computational complexity at the inference phase.

Both of the methods consist of two steps: first, they obtain an attention
activation vector, then using the vector, SE scales the feature channels, while
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Fig. 1. Accuracy vs. FLOPs vs. Parameters comparisons on ImageNet, using
ShuffleNetV2 [22]. (a) The trade-off between accuracy and FLOPs; (b) the trade-off
between accuracy and number of parameters.

CondConv performs a mixture of expert weights. Despite they are usually treated
as entirely distinct methods, they have some things in common. It is natural to
ask: do they have any correlations? We show that we can link the two extremely
effective approaches, by generalizing them in the weight network space.

Our methods, called WeightNet, extends the first step by simply adding one
more layer for generating the convolutional weight directly (see Fig. 2). The layer
is a grouped fully-connected layer applied to the attention vector, generating the
weight in a group-wise manner. To achieve this, we rethink SENet and CondConv
and discover that the subsequent operations after the first step can be cast to a
grouped fully-connected layer, however, they are particular cases.

In that grouped layer, the output is direct the convolution weight, but the
input size and the group number are variable. In CondConv the group number is
discovered to be a minimum number of one and the input is small (4, 8, 16, etc.)
to avoid the rapid growth of the model size. In SENet the group is discovered to
be the maximum number equal to the input channel number.

Despite the two variants having seemingly minor differences, they have a large
impact: they together control the parameter-FLOPs-accuracy tradeoff, leading
to surprisingly different performance. Intuitively, we introduce two hyperparame-
ters M and G, to control the input number and the group number, respectively.
The two hyperparameters have not been observed and investigated before, in
the additional grouped fully-connected layer. By simply adjusting them, we can
strike a better trade-off between the representation capacity and the number
of model parameters. We show by experiments on ImageNet classification and
COCO detection the superiority of our method (Figure 1).

Our main contributions include: 1) First, we rethink the weight generat-
ing manners in SENet and CondConv, for the first time, to be complete fully-
connected networks; 2) Second, only from this new perspective can we revisit
the novel network design space in the weight space, which provides more effec-
tive structures than those in convolution design space (group-wise, point-wise,
and depth-wise convolutions, etc). In this new and rarely explored weight space,
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there could be new structures besides fully-connected layers, there could also be
more kinds of sparse matrix besides those in Fig. 4. We believe this is a promising
direction and hope it would have a broader impact on the vision community.

2 Related Work

Weight generation networks Schmidhuber et al. [28] incorporate the ”fast”
weights into recurrent connections in RNN methods. Dynamic filter networks [14]
use filter-generating networks on video and stereo prediction. HyperNetworks [6]
decouple the neural networks according to the relationship in nature: a genotype
(the hypernetwork), and a phenotype (the main network), that uses a small
network to produce the weights for the main network, which reduces the number
of parameters while achieving respectable results. Meta networks [24] generate
weights using a meta learner for rapid generalization across tasks. The methods
[14,6,24,25] provide a worthy design space in the weight-generating network, our
method follows the spirits and uses a WeightNet to generate the weights.

Conditional CNNs Different from standard CNNs [29,7,30,40,4,10,27,9], con-
ditional (or dynamic) CNNs [17,20,37,39,15] use dynamic kernels, widths, or
depths conditioned on the input samples, showing great improvement. Spatial
Transform Networks [13] learns to transform to warp the feature map in a para-
metric way. Yang et al. [38] proposed conditional parameterized convolution to
mix the experts voted by each sample’s feature. The methods are extremely
effective because they improve the Top-1 accuracy by more than 5% on the Im-
ageNet dataset, which is a great improvement. Different from dynamic features
or dynamic kernels, another series of work [35,12] focus on dynamic depths of
the convolutional networks, that skip some layers for different samples.

Attention and gating mechanism Attention mechanism [33,21,1,34,36] is
also a kind of conditional network, that adjusts the networks dependent on the
input. Recently the attention mechanism has shown its great improvement. Hu
et al. [11] proposed a block-wise gating mechanism to enhance the representation
ability, where they adopted a squeeze and excitation method to use global infor-
mation and capture channel-wise dependencies. SENet achieves great success by
not only winning the ImageNet challenge [5], but also helping many structures to
achieve state-of-the-art performance [9,31,32]. In GaterNet [3], a gater network
was used to predict binary masks for the backbone CNN, which can result in
performance improvement. Besides, Li et al. [16] introduced a kernel selecting
module, where they added attention to kernels with different sizes to enhance
CNN’s learning capability. In contrast, WeightNet is designed on kernel space
which is more time-conserving and memory-conserving than feature space.

3 WeightNet

The WeightNet generalizes the current two extremely effective modules in weight
space. Our method is conceptually simple: both SENet and CondConv generate
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Fig. 2. The WeightNet structure. The convolutional weight is generated by Weight-
Net that is comprised entirely of (grouped) fully-connected layers. The symbol (B) rep-
resents the dimension reduction (global average pool) from feature space (C×H×W ) to
kernel space (C). The ’FC’ denotes a fully-connected layer, ’conv’ denotes convolution,
and ’WN’ denotes the WeightNet.

the activation vector using a global average pooling (GAP) and one or two fully-
connected layers followed with a non-linear sigmoid operation; to this we simply
add one more grouped fully-connected layer, to generate the weight directly (Fig.
2). This is different from common practice that applies the vector to feature space
and we avoid the memory-consuming training period.

WeightNet is computationally efficient because of the dimension reduction
(GAP) from C×H×W dimension to a 1-D dimension C. Evidently, the Weight-
Net only consists of (grouped) fully-connected layers. We begin by introducing
the matrix multiplication behaviors of (grouped) fully-connected operations.

Grouped fully-connected operation Conceptually, neurons in a fully-connected
layer have full connections and thus can be computed with a matrix multipli-
cation, in the form Y = WX (see Fig. 3 (a)). Further, neurons in a grouped
fully-connected layer have group-wise sparse connections with activations in the
previous layer.

Formally, in Fig. 3 (b), the neurons are divided exactly into g groups, each
group (with i/g inputs and o/g outputs) performs a fully-connected operation
(see the red box for example). One notable property of this operation, which can
be easily seen in the graphic illustration, is that the weight matrix becomes a
sparse, block diagonal matrix, with a size of (o/g × i/g) in each block.

Grouped fully-connected operation is a general form of fully-connected opera-
tion where the group number is one. Next, we show how it generalizes CondConv
and SENet: use the grouped fully-connected layer to replace the subsequent op-
erations after the activation vector and directly output the generated weight.

Denotation We denote a convolution operation with the input feature map
X ∈ RC×h×w, the output feature map Y ∈ RC×h′×w′

, and the convolution
weight W′ ∈ RC×C×kh×kw . For simplicity, but without loss of generality, it is
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Fig. 3. The matrix multiplication behaviors of the (grouped) fully-connected oper-
ations. Here i, o and g denote the numbers of the input channel, output channel and
group number. (a) A standard matrix multiplication representing a fully-connected
layer. (b) With the weight in a block diagonal sparse matrix, it becomes a general
grouped fully-connected layer. Each group (red box) is exactly a standard matrix mul-
tiplication in (a), with i/g input channels and o/g output channels. Fig. (a) is a special
case of Fig. (b) where g = 1.

assumed that the number of the input channels equals to that of output channels,
here (h,w), (h′, w′), (kh, kw) denote the 2-D heights and the widths for the input,
output, and kernel. Therefore, we denote the convolution operation using the
symbol (∗): Yc = W′

c ∗X. We use α to denote the attention activation vector
in CondConv and SENet.

3.1 Rethinking CondConv

Conditionally parameterized convolution (CondConv) [38] is a mixture of m
experts of weights, voted by a m-dimensional vector α, that is sample-dependent
and makes each sample’s weight dynamic.

Formally, we begin with reviewing the first step in CondConv, it gets α
by a global average pooling and a fully-connected layer Wfc1, followed by a
sigmoid σ(·) : α = σ(Wfc1 × 1

hw

∑
i∈h,j∈w Xc,i,j), here (×) denotes the matrix

multiplication, Wfc1 ∈ Rm×C , α ∈ Rm×1.
Next, we show the following mixture of expert operations in the original paper

can essentially be replaced by a fully-connected layer. The weight is generated
by multiple weights: W′ = α1 ·W1 + α2 ·W2 + ... + αm ·Wm, here Wi ∈
RC×C×kh×kw , (i ∈ {1, 2, ...,m}). We rethink it as follows:

W′ = WT ×α
where W = [W1W2...Wm]

(1)
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Table 1. Summary of the configure in the grouped fully-connected layer. λ is the
proportion of input size to group number, representing the major increased parameters.

Model Input size Group number λ Output size

CondConv m 1 m C × C × kh × kw
SENet C C 1 C × C × kh × kw
WeightNet M × C G× C M/G C × C × kh × kw

Here W ∈ Rm×CCkhkw denotes the matrix concatenation result, (×) denotes
the matrix multiplication (fully-connected in Fig. 3a). Therefore, the weight is
generated by simply adding one more layer (W) to the activation layer. That
layer is a fully-connected layer with m inputs and C × C × kh × kw outputs.

This is different from the practice in the original paper in the training phase.
In that case, it is memory-consuming and suffers from the batch problem when
increasing m (batch size should be set to one when m > 4). In this case, we train
with large batch sizes efficiently.

3.2 Rethinking SENet

Squeeze and Excitation (SE) [11] block is an extremely effective ”plug-n-play”
module that is acted on the feature map. We integrate the SE module into the
convolution kernels and discover it can also be represented by adding one more
grouped fully-connected layer to the activation vector α. We start from the re-
viewing of the α generation process. It has a similar process with CondConv: a
global average pool, two fully-connected layer with non-linear ReLU (δ) and sig-
moid (σ): α = σ(Wfc2 × δ(Wfc1× 1

hw

∑
i∈h,j∈w Xc,i,j)), here Wfc1 ∈ RC/r×C ,

Wfc2 ∈ RC×C/r, (×) in the equation denotes the matrix multiplication. The two
fully-connected layers here are mainly used to reduce the number of parameters
because α here is a C-dimensional vector, a single layer is parameter-consuming.

Next, in common practice the block is used before or after a convolution layer,
α is computed right before a convolution (on the input feature X): Yc = W′

c ∗
(X·α), or right after a convolution (on the output feature Y): Yc = (W′

c∗X)·αc,
here (·) denotes dot multiplication broadcasted along the C axis. In contrast, on
kernel level, we analyze the case that SE is acted on W′: Yc = (W′

c · αc) ∗X.
Therefore we rewrite the weight to be W′ · α, the (·) here is different from the
(×) in Equ. 1. In that case, a dimension reduction is performed; in this case,
no dimension reduction. Therefore, it is essentially a grouped sparse connected
operation, that is a particular case of Fig. 3 (b), with C inputs, C×C×kh×kw
outputs, and C groups.

3.3 WeightNet Structure

By far, we note that the group number in the general grouped fully-connected
layer (Fig. 3 b) has values range from 1 to the channel number. That is, the group
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Fig. 4. The diagrams of the different cases in the block diagonal matrix (Fig. 3
b), that can represent the weights of the grouped fully-connected layer in CondConv,
SENet and the general WeightNet. They output the same fixed size (convolution ker-
nel’s size C × C × kh × kw), but have different group numbers: (a) the group number
has a minimum number of one (CondConv), (b) the group number has a maximum
number equals to the input size C (SENet), since (a) and (b) are extreme cases, (c)
shows the general group number between 1 and the input size (WeightNet).

has a minimum number of one and has a maximum number of the input channel
numbers. It, therefore, generalizes the CondConv, where the group number takes
the minimum value (one), and the SENet, where it takes the maximum value
(the input channel number). We conclude that they are two extreme cases of the
general grouped fully-connected layer (Fig. 4).

We summarize the configure in the grouped fully-connected layer (in Table 1)
and generalize them using two additional hyperparameters M and G. To make
the group number more flexible, we set it by combining the channel C and a con-
stant hyperparameterG, Moreover, another hyperparameterM is used to control
the input number, thus M and G together to control the parameter-accuracy
tradeoff. The layer in CondConv is a special case with M = m/C,G = 1/C,
while for SENet M = 1, G = 1. We constrain M × C and G× C to be integers,
M is divisible by G in this case. It is notable that the two hyperparameters are
right there but have not been noticed and investigated.

Implementation details For the activation vector α’s generating step, since
α is a (M × C)-dimensional vector, it may be large and parameter-consuming,
therefore, we use two fully-connected layers with a reduction ratio r. It has a
similar process with the two methods: a global average pool, two fully-connected
layer with non-linear sigmoid (σ): α = σ(Wfc2 ×Wfc1 × 1

hw

∑
i∈h,j∈w Xc,i,j),

here Wfc1 ∈ RC/r×C , Wfc2 ∈ RMC×C/r, (×) denotes the matrix multiplication,
r has a default setting of 16.

In the second step, we adopt a grouped fully-connected layer with M × C
input, C × C × kh × kw output, and G× C groups. We note that the structure
is a straightforward design, and more complex structures have the potential to
improve the performance further, but it is beyond the focus of this work.
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Complexity analysis The structure of WeightNet decouples the convolution
computation and the weight computation into two separate branches (see Fig.
2). Because the spatial dimensions (h × w) are reduced before feeding into the
weight branch, the computational amount (FLOPs) is mainly in the convolution
branch. The FLOPs complexities in the convolution and weight branches are
O(hwCCkhkw) and O(MCCkhkw/G), the latter is relatively negligible. The
parameter complexities for each branch are zero and O(M/G×C×C×kh×kw),
which is M/G times of normal convolution. We notate λ to represent it (Table
1).

Training with batch dimension The weight generated by WeightNet has a
dimension of batch size, here we briefly introduce the training method related to
the batch dimension. We denote B as batch size and reshape the input X of the
convolution layer to (1, B×C, h,w). Thus X has B×C channel numbers, which
means we regard different samples in the same batch as different channels. Next,
we reshape the generated weight W to (B,C,C, kh, kw). Then it becomes a group
convolution, with a group number of B, the inputs and the outputs in each group
are both equal to C. Therefore, we use the same memory-conserving method for
both training and inference periods, and this is different from CondConv.

4 Experiments

In this section, we evaluate the WeightNet on classification and COCO detec-
tion tasks [19]. In classification task, we conduct experiments on a light-weight
CNN model ShuffleNetV2 [22] and a deep model ResNet50 [7]. In the detection
task, we evaluate our method’s performance on distinct backbone models under
RetinaNet. In the final analysis, we conduct ablation studies and investigate the
properties of WeightNet in various aspects.

4.1 Classification

We conduct image classification experiments on ImageNet 2012 classification
dataset, which includes 1000 classes [26]. Our models are first trained on the
training dataset that consists of 1.28 million images and then evaluated over 50k
images in the validation dataset. For the training settings, all the ShuffleNetV2
[22] models are trained with the same settings as [22]. For ResNet-50, we use
a linear decay scheduled learning rate starting with 0.1, a batch size of 256, a
weight decay of 1e-4, and 600k iterations.

ShuffleNetV2 To investigate the performance of our method on light-weight
convolution networks, we construct experiments based on a recent effective net-
work ShuffleNetV2 [22]. For a fair comparison, we retrain all the models by
ourselves, using the same code base. We replace the standard convolution ker-
nels in each bottleneck with our proposed WeightNet, and control FLOPs and
the number of parameters for fairness comparison.
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Table 2. ImageNet classification re-
sults of the WeightNet on ShuffleNetV2
[22]. For fair comparison, we control the
values of λ to be 1×, to make sure that the
experiments are under the same FLOPs
and the same number of parameters.

Model # Params FLOPs Top-1 err.

ShuffleNetV2 (0.5×) 1.4M 41M 39.7
+ WeightNet (1×) 1.5M 41M 36.7

ShuffleNetV2 (1×) 2.2M 138M 30.9
+ WeightNet (1×) 2.4M 139M 28.8

ShuffleNetV2 (1.5×) 3.5M 299M 27.4
+ WeightNet (1×) 3.9M 301M 25.6

ShuffleNetV2 (2×) 5.5M 557M 25.5
+ WeightNet (1×) 6.1M 562M 24.1

Table 3. ImageNet classification re-
sults of the WeightNet on ShuffleNetV2
[22]. The comparison is under the same
FLOPs and regardless of the number of
parameters. To obtain the optimum per-
formance, we set the λ to {8×, 4×, 4×,
4×} respectively.

Model # Params FLOPs Top-1 err.

ShuffleNetV2 (0.5×) 1.4M 41M 39.7
+ WeightNet (8×) 2.7M 42M 34.0

ShuffleNetV2 (1×) 2.2M 138M 30.9
+ WeightNet (4×) 5.1M 141M 27.6

ShuffleNetV2 (1.5×) 3.5M 299M 27.4
+ WeightNet (4×) 9.6M 307M 25.0

ShuffleNetV2 (2×) 5.5M 557M 25.5
+ WeightNet (4×) 18.1M 573M 23.5

As shown in Table 1, λ is utilized to control the number of parameters in a
convolution. For simplicity, we fix G = 2 when adjusting λ. In our experiments, λ
has several sizes {1×, 2×, 4×, 8×}. To make the number of channels conveniently
divisible by G when scaling the number of parameters, we slightly adjust the
number of channels for ShuffleNetV2 1× and 2×.

We evaluate the WeightNet from two aspects. Table 2 reports the perfor-
mance of our method considering parameters. The experiments illustrate that
our method has significant advantages over the other counterparts under the
same FLOPs and the same number of parameter constraints. ShuffleNetV2 0.5×
gains 3% Top-1 accuracy without additional computation budgets.

In Table 3, we report the advantages after applying our method on Shuf-
fleNetV2 with different sizes. Considering in practice, the storage space is suffi-
cient. Therefore, without the loss of fairness, we only constrain the Flops to be
the same and tolerate the increment of parameters.

ShuffleNet V2 (0.5×) gains 5.7% Top-1 accuracy which shows further sig-
nificant improvements by adding a minority of parameters. ShuffleNet V2 (2×)
gains 2.0% Top-1 accuracy.

To further investigate the improvement of our method, we compare our
method with some recent effective conditional CNN methods under the same
FLOPs and the same number of parameters. For the network settings of Cond-
Conv [38], we replace standard convolutions in the bottlenecks with CondConv,
and change the number of experts as described in CondConv to adjust param-
eters, as the number of experts grows, the number of parameters grows. To
reveal the model capacity under the same number of parameters, for our pro-
posed WeightNet, we control the number of parameters by changing λ. Table 4
describes the comparison between our method and other counterpart effective
methods, from which we observe our method outperforms the other conditional
CNN methods under the same budgets. The Accuracy-Parameters tradeoff and
the Accuracy-FLOPs tradeoff are shown in Figure 1.
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Table 4. Comparison with recently effective attention modules on Shuf-
fleNetV2 [22] and ResNet50 [7]. We show results on ImageNet.

Model # Params FLOPs Top-1 err.

ShuffleNetV2 [22] (0.5×) 1.4M 41M 39.7
+ SE [11] 1.4M 41M 37.5
+ SK [16] 1.5M 42M 37.5
+ CondConv [38] (2×) 1.5M 41M 37.3
+ WeightNet (1×) 1.5M 41M 36.7
+ CondConv [38] (4×) 1.8M 41M 35.9
+ WeightNet (2×) 1.8M 41M 35.5

ShuffleNetV2 [22] (1.5×) 3.5M 299M 27.4
+ SE [11] 3.9M 299M 26.4
+ SK [16] 3.9M 306M 26.1
+ CondConv [38] (2×) 5.2M 303M 26.3
+ WeightNet (1×) 3.9M 301M 25.6
+ CondConv [38] (4×) 8.7M 306M 26.1
+ WeightNet (2×) 5.9M 303M 25.2

ShuffleNetV2 [22] (2.0×) 5.5M 557M 25.5
+ WeightNet (2×) 10.1M 565M 23.7

ResNet50 [7] 25.5M 3.86G 24.0
+ SE [11] 26.7M 3.86G 22.8
+ CondConv [38] (2×) 72.4M 3.90G 23.4
+ WeightNet (1×) 31.1M 3.89G 22.5

From the results, we can see SE and CondConv boost the base models of all
sizes significantly. However, CondConv has major improvements in smaller sizes
especially, but as the model becomes larger, the smaller the advantage it has.
For example, CondConv performs better than SE on ShuffleNetV2 0.5× but SE
performs better on ShuffleNetV2 2×. In contrast, we find our method can be
uniformly better than SE and CondConv.

To reduce the overfitting problem while increasing parameters, we add dropout
[8] for models with more than 3M parameters. As we described in Section 3.3,
λ represents the increase of parameters, so we measure the capacity of networks
by changing parameter multiplier λ in {1×, 2×, 4×, 8×}. We further analyze the
effect of λ and the grouping hyperparameter G on each filter in the ablation
study section.

ResNet50 For larger classification models, we conduct experiments on ResNet50
[7]. We use a similar way to replace the standard convolution kernels in ResNet50
bottlenecks with our proposed WeightNet. Besides, we train the conditional
CNNs utilizing the same training settings with the base ResNet50 network.

In Table 4, based on ResNet50 model, we compare our method with SE [11]
and CondConv [38] under the same computational budgets. It’s shown that our
method still performs better than other conditional convolution modules. We
perform CondConv (2×) on ResNet50, the results reveal that it does not have
further improvement comparing with SE, although CondConv has a larger num-
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Table 5. Object detection results com-
paring with baseline backbone. We show
RetinaNet [18] results on COCO.

Backbone # Params FLOPs mAP

ShuffleNetV2 [22] (0.5×) 1.4M 41M 22.5
+ WeightNet (4×) 2.0M 41M 27.1

ShuffleNetV2 [22] (1.0×) 2.2M 138M 29.2
+ WeightNet (4×) 4.8M 141M 32.1

ShuffleNetV2 [22] (1.5×) 3.5M 299M 30.8
+ WeightNet (2×) 5.7M 303M 33.3

ShuffleNetV2 [22] (2.0×) 5.5M 557M 33.0
+ WeightNet (2×) 9.7M 565M 34.0

Table 6. Object detection results com-
paring with other conditional CNN back-
bones. We show RetinaNet [18] results on
COCO.

Backbone # Params FLOPs mAP

ShuffleNetV2 [22] (0.5×) 1.4M 41M 22.5
+ SE [11] 1.4M 41M 25.0
+ SK [16] 1.5M 42M 24.5
+ CondConv [38] (2×) 1.5M 41M 25.8
+ CondConv [38] (4×) 1.8M 41M 25.0
+ CondConv [38] (8×) 2.3M 42M 26.4
+ WeightNet (4×) 2.0M 41M 27.1

ber of parameters. We conduct our method (1×) by adding limited parameters
and it also shows further improvement comparing with SE. Moreover, Shuf-
fleNetV2 [22] (2×) with our method performs better than ResNet50, with only
40% parameters and 14.6% FLOPs.

4.2 Object Detection

We evaluate the performance of our method on COCO detection [19] task. The
COCO dataset has 80 object categories. We use the trainval35k set for training
and use the minival set for testing. For a fair comparison, we train all the models
with the same settings. The batch size is set to 2, the weight decay is set to 1e-
4 and the momentum is set to 0.9. We use anchors for 3 scales and 3 aspect
ratios and use a 600-pixel train and test image scale. We conduct experiments
on RetinaNet [18] using ShuffleNetV2 [22] as the backbone feature extractor. We
compare the backbone models of our method with the standard CNN models.

Table 5 illustrates the improvement of our method over standard convolution
on the RetinaNet framework. For simplicity we set G = 1 and adjust the size of
WeightNet to {2×, 4×}. As we can see our method improves the mAP signifi-
cantly by adding a minority of parameters. ShuffleNetV2 (0.5×) with WeightNet
(4×) improves 4.6 mAP by adding few parameters under the same FLOPs.

To compare the performance between WeightNet and CondConv [38] under
the same parameters, we utilize ShuffleNetV2 0.5× as the backbone and investi-
gate the performances of all CondConv sizes. Table 6 reveals the clear advantage
of our method over CondConv. Our method outperforms CondConv uniformly
under the same computational budgets. As a result, our method is indeed robust
and fundamental on different tasks.

4.3 Ablation Study and Analysis

The influence of λ. By tuning λ, we control the number of parameters. We
investigate the influence of λ on ImageNet Top-1 accuracy, conducting experi-
ments on the ShuffleNetV2 structure. Table 7 shows the results. We find that
the optimal λ for ShuffleNetV2 {0.5×, 1×, 1.5×, 2×} are {8,4,4,4}, respectively.
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Table 7. Ablation on λ. The table shows
the ImageNet Top-1 err. results. The ex-
periments are conducted on ShuffleNetV2
[22]. By increasing λ in the range {1,2,4,8},
the FLOPs does not change and the num-
ber of parameters increases.

λ

Model 1 2 4 8

ShuffleNetV2 (0.5×) 36.7 35.5 34.4 34.0
ShuffleNetV2 (1.0×) 28.8 28.1 27.6 27.8
ShuffleNetV2 (1.5×) 25.6 25.2 25.0 25.3
ShuffleNetV2 (2.0×) 24.1 23.7 23.5 24.0

Table 8. Ablation on G. We tune the
group hyperparameter G to {1,2,4}, we
keep λ = 1. The results are ImageNet Top-
1 err. The experiments are conducted on
ShuffleNetV2 [22].

Model G # Params FLOPs Top-1 err.

ShuffleNetV2
(0.5×)

G=1 1.4M 41M 37.18
G=2 1.5M 41M 36.73
G=4 1.5M 41M 36.37

ShuffleNetV2
(1.0×)

G=1 2.3M 139M 29.09
G=2 2.4M 139M 28.77
G=4 2.6M 139M 28.76

Table 9. Ablation study on different
stages. The X means the convolutions in
that stage is integrated with our proposed
WeightNet.

Stage2 Stage3 Stage4 Top-1 err.

X 39.13
X 36.82

X 36.43
X X 35.73
X X 36.44

X X 35.30
X X X 35.47

Table 10. Ablation study on the number
of the global average pooling operators
in the whole network. We conduct Shuf-
fleNetV2 0.5× experiments on ImageNet
dataset. We compare the cases: one global
average pooling in 1) each stage, 2) each
block, and 3) each layer. GAP represents
global average pooling in this table.

Top-1 err.

Stage wise GAP 37.01
Block wise GAP 35.47
Layer wise GAP 35.04

The model capacity has an upper bounded as we increase λ, and there exists a
choice of λ to achieve the optimal performance.

The influence of G. To investigate the influence of G, we conduct experiments
on ImageNet based on ShuffleNetV2. Talbe 8 illustrates the influence of G. We
keep λ equals to 1, and change G to {1,2,4}. From the result we conclude that
increasing G has a positive influence on model capacity.

WeightNet on different stages. As WeightNet makes the weights for each
convolution layer changes dynamically for distinct samples, we investigate the
influence of each stage. We change the static convolutions of each stage to our
method respectively as Table 9 shows. From the result, we conclude that the
last stage influences much larger than other stages, and the performance is best
when we change the convolutions in the last two stages to our method.

The number of the global average pooling operator. Sharing the global
average pooling (GAP) operator contributes to improving the speed of the con-
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Fig. 5. Analysis for weights generated by our WeightNet. The figure illustrates of the
weights of the 1,000 samples. The samples belong to 20 classes, which are represented
by 20 different colors. Each point represents the weights of one sample.

ditional convolution network. We compare the following three kinds of usages
of GAP operator: using GAP for each layer, sharing GAPs in a block, sharing
GAPs in a stage. We conduct experiments on ShuffleNetV2 [22] (0.5×) baseline
with WeightNet (2×). Table 10 illustrates the comparison of these three kinds
of usages. The results indicate that by adding the number of GAPs, the model
capacity improves.

Weight similarity among distinct samples. We randomly select 20 classes
in the ImageNet validation set, which has 1,000 classes in total. Each class has
50 samples, and there are 1,000 samples in total. We extract the weights in the
last convolution layer in Stage 4 from a well-trained ShuffleNetV2 (2×) with
our WeightNet. We project the weights of each sample from a high dimensional
space to a 2-dimension space by t-SNE [23], which is shown in Figure 5. We use
20 different colors to distinguish samples from 20 distinct classes.

We observe two characteristics. First, different samples have distinct weights.
Second, there are roughly 20 point clusters and the weights of samples in the
same classes are closer to each other, which indicates that the weights of our
method capture more class-specific information than static convolution.

Channel similarity. We conduct the experiments to show the channel similar-
ity of our method, we use the different filters’ similarity in a convolution weight
to represent the channel similarity. Lower channel similarity would improve the
representative ability of CNN models and improve the channel representative ca-
pacities. Strong evidence was found to show that our method has a lower channel
similarity.

We analyze the last convolution layer’s kernel in the last stage of Shuf-
fleNetV2 [22] (0.5×), where the channel number is 96, thus there are 96 filters
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Fig. 6. Cosine similarity matrix. A 96×96 matrix represents 96 filters’ pair-by-pair
similarity, the smaller value (darker color) means the lower similarities. (a) Standard
convolution kernel’s similarity matrix, (b-f) WeightNet kernels’ similarity matrixes.
The colors in (b-f) are obviously much darker than (a), meaning lower similarity.

in that convolution kernel. We compute the cosine similarities of the filters pair
by pair, that comprise a 96×96 cosine similarity matrix.

In Figure 6, we compare the channel similarity of WeightNet and standard
convolution. We first compute the cosine similarity matrix of a standard con-
volution kernel and display it in Figure 6-(a). Then for our method, because
different samples do not share the same kernel, we randomly choose 5 samples
in distinct classes from the ImageNet validation set and show the corresponding
similarity matrix in Figure 6-(b,c,d,e,f). The results clearly illustrate that our
method has lower channel similarity.

5 Conclusion and Future Works

The study connects two distinct but extremely effective methods SENet and
CondConv on weight space, and unifies them into the same framework we call
WeightNet. In the simple WeightNet comprised entirely of (grouped) fully-connected
layers, the grouping manners of SENet and CondConv are two extreme cases,
thus involving two hyperparameters M and G that have not been observed and
investigated. By simply adjusting them, we got a straightforward structure that
achieves better tradeoff results. The more complex structures in the framework
have the potential to further improve the performance, and we hope the simple
framework in the weight space helps ease future research. Therefore, this would
be a fruitful area for future work.
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