Abstract
A key step in any scanning-based asset creation workflow is to convert unordered point clouds to a surface. Classical methods (e.g., Poisson reconstruction) start to degrade in the presence of noisy and partial scans. Hence, deep learning based methods have recently been proposed to produce complete surfaces, even from partial scans. However, such data-driven methods struggle to generalize to new shapes with large geometric and topological variations. We present Points2Surf, a novel patch-based learning framework that produces accurate surfaces directly from raw scans without normals. Learning a prior over a combination of detailed local patches and coarse global information improves generalization performance and reconstruction accuracy. O5ur extensive comparison on both synthetic and real data demonstrates a clear advantage of our method over state-of-the-art alternatives on previously unseen classes (on average, Points2Surf brings down reconstruction error by 30% over SPR and by 270%+ over deep learning based SotA methods) at the cost of longer computation times and a slight increase in small-scale topological noise in some cases. Our source code, pre-trained model, and dataset are available at: https://github.com/ErlerPhilipp/points2surf.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Symposium on Geometry Processing, vol. 7, pp. 39–48 (2007)
Badki, A., Gallo, O., Kautz, J., Sen, P.: Meshlet priors for 3D mesh reconstruction. arXiv (2020)
Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: two new techniques for image matching. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, IJCAI 1977, vol. 2, pp. 659–663. Morgan Kaufmann Publishers Inc., San Francisco (1977). http://dl.acm.org/citation.cfm?id=1622943.1622971
Berger, M., et al.: A survey of surface reconstruction from point clouds. In: Computer Graphics Forum, vol. 36, pp. 301–329. Wiley Online Library (2017)
Chaine, R.: A geometric convection approach of 3-D reconstruction. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 218–229. Eurographics Association (2003)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the CVPR (2019)
Collins, R.T.: A space-sweep approach to true multi-image matching. In: Proceedings of the CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 358–363. IEEE (1996)
Dai, A., Nießner, M.: Scan2Mesh: from unstructured range scans to 3D meshes. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR). IEEE (2019)
Dey, T.K., Goswami, S.: Tight cocone: a water-tight surface reconstructor. In: Proceedings of the 8th ACM Symposium on Solid Modeling and Applications, pp. 127–134. ACM (2003)
Digne, J., Morel, J.M., Souzani, C.M., Lartigue, C.: Scale space meshing of raw data point sets. In: Computer Graphics Forum, vol. 30, pp. 1630–1642. Wiley Online Library (2011)
Edelsbrunner, H.: Surface reconstruction by wrapping finite sets in space. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computational Geometry. Algorithms and Combinatorics, vol. 25, pp. 379–404. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-55566-4_17
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)
Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: a Papier-Mâché approach to learning 3D surface generation. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Gschwandtner, M., Kwitt, R., Uhl, A., Pree, W.: BlenSor: blender sensor simulation toolbox. In: Bebis, G., et al. (eds.) ISVC 2011. LNCS, vol. 6939, pp. 199–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24031-7_20
Guerrero, P., Kleiman, Y., Ovsjanikov, M., Mitra, N.J.: PCPNet: learning local shape properties from raw point clouds. Comput. Graph. Forum 37(2), 75–85 (2018). https://doi.org/10.1111/cgf.13343
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. ACM SIGGRAPH Comput. Graph. 26, 71–78 (1992)
Kazhdan, M.: Reconstruction of solid models from oriented point sets. In: Proceedings of the 3rd Eurographics Symposium on Geometry Processing, p. 73. Eurographics Association (2005)
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Eurographics Symposium on Geometry Processing (2006)
Kazhdan, M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. (ToG) 32(3), 29 (2013)
Koch, S., et al.: ABC: a big CAD model dataset for geometric deep learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)
Ladicky, L., Saurer, O., Jeong, S., Maninchedda, F., Pollefeys, M.: From point clouds to mesh using regression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3893–3902 (2017)
Li, G., Liu, L., Zheng, H., Mitra, N.J.: Analysis, reconstruction and manipulation using arterial snakes. In: ACM SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA 2010. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1866158.1866178
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21, 163–169 (1987)
Manson, J., Petrova, G., Schaefer, S.: Streaming surface reconstruction using wavelets. Comput. Graph. Forum 27, 1411–1420 (2008). Wiley Online Library
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: Learning 3D reconstruction in function space. In: Proceedings of CVPR (2019)
Nagai, Y., Ohtake, Y., Suzuki, H.: Smoothing of partition of unity implicit surfaces for noise robust surface reconstruction. Comput. Graph. Forum 28, 1339–1348 (2009). Wiley Online Library
Ohrhallinger, S., Mudur, S., Wimmer, M.: Minimizing edge length to connect sparsely sampled unstructured point sets. Comput. Graph. 37(6), 645–658 (2013)
Ohtake, Y., Belyaev, A., Seidel, H.P.: A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions. In: 2003 Shape Modeling International, pp. 153–161. IEEE (2003)
Ohtake, Y., Belyaev, A., Seidel, H.P.: 3D scattered data interpolation and approximation with multilevel compactly supported RBFs. Graph. Models 67(3), 150–165 (2005)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. arXiv preprint arXiv:1901.05103 (2019)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for 3d classification and segmentation. arXiv preprint arXiv:1612.00593 (2016)
Rakotosaona, M.J., La Barbera, V., Guerrero, P., Mitra, N.J., Ovsjanikov, M.: PointCleanNet: learning to denoise and remove outliers from dense point clouds. Comput. Graph. Forum 39, 185–203 (2019)
Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L., Cohen-Or, D.: Competing fronts for coarse-to-fine surface reconstruction. Comput. Graph. Forum 25, 389–398 (2006). Wiley Online Library
Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2088–2096 (2017)
Wang, P.S., Sun, C.Y., Liu, Y., Tong, X.: Adaptive O-CNN: a patch-based deep representation of 3D shapes. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)
Williams, F., Schneider, T., Silva, C.T., Zorin, D., Bruna, J., Panozzo, D.: Deep geometric prior for surface reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10130–10139 (2019)
Wolff, K., et al.: Point cloud noise and outlier removal for image-based 3D reconstruction. In: 2016 4th International Conference on 3D Vision (3DV), pp. 118–127 (October 2016). https://doi.org/10.1109/3DV.2016.20
Acknowledgement
This work has been supported by the FWF projects no. P24600, P27972 and P32418 and the ERC Starting Grant SmartGeometry (StG-2013-335373).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Erler, P., Guerrero, P., Ohrhallinger, S., Mitra, N.J., Wimmer, M. (2020). Points2Surf Learning Implicit Surfaces from Point Clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12350. Springer, Cham. https://doi.org/10.1007/978-3-030-58558-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-58558-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58557-0
Online ISBN: 978-3-030-58558-7
eBook Packages: Computer ScienceComputer Science (R0)