Abstract
We introduce the Average Mixing Kernel Signature (AMKS), a novel signature for points on non-rigid three-dimensional shapes based on the average mixing kernel and continuous-time quantum walks. The average mixing kernel holds information on the average transition probabilities of a quantum walk between each pair of vertices of the mesh until a time T. We define the AMKS by decomposing the spectral contributions of the kernel into several bands, allowing us to limit the influence of noise-dominated high-frequency components and obtain a more descriptive signature. We also show through a perturbation theory analysis of the kernel that choosing a finite stopping time T leads to noise and deformation robustness for the AMKS. We perform an extensive experimental evaluation on two widely used shape matching datasets under varying level of noise, showing that the AMKS outperforms two state-of-the-art descriptors, namely the Heat Kernel Signature (HKS) and the similarly quantum-walk based Wave Kernel Signature (WKS) .
L. Cosmo and G. Minello—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3D shape segmentation based on a quantum mechanical feature descriptor. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 122–131. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23123-0_13
Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633. IEEE (2011)
Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum Jensen-Shannon graph kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)
Bogo, F., Romero, J., Loper, M., Black, M.J.: Faust: dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3794–3801 (2014)
Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M., Cremers, D.: Anisotropic diffusion descriptors. Comput. Graph. Forum 35, 431–441 (2016). Wiley Online Library
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, New York (2008)
Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1704–1711. IEEE (2010)
Corman, É., Ovsjanikov, M., Chambolle, A.: Supervised descriptor learning for non-rigid shape matching. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 283–298. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_20
Cosmo, L., Rodola, E., Albarelli, A., Mémoli, F., Cremers, D.: Consistent partial matching of shape collections via sparse modeling. Comput. Graph. Forum 36, 209–221 (2017). Wiley Online Library
Cosmo, L., Rodolà, E., Bronstein, M.M., Torsello, A., Cremers, D., Sahillioglu, Y.: Shrec’16: partial matching of deformable shapes. In: Proceedings of the 3DOR, vol. 2(9), p. 12 (2016)
Cosmo, L., Rodola, E., Masci, J., Torsello, A., Bronstein, M.M.: Matching deformable objects in clutter. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 1–10. IEEE (2016)
Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recogn. 42(9), 1988–2002 (2009)
Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319–2328 (2015)
Gasparetto, A., Minello, G., Torsello, A.: Non-parametric spectral model for shape retrieval. In: 2015 International Conference on 3D Vision, pp. 344–352. IEEE (2015)
Godsil, C.: Average mixing of continuous quantum walks. J. Comb. Theor. Ser. A 120(7), 1649–1662 (2013)
Huang, H., Kalogerakis, E., Chaudhuri, S., Ceylan, D., Kim, V.G., Yumer, E.: Learning local shape descriptors from part correspondences with multiview convolutional networks. ACM Trans. Graph. (TOG) 37(1), 6 (2018)
Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)
Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. ACM Trans. Graph. (TOG) 30, 79 (2011). ACM
Levy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI 2006), p. 13. IEEE (2006)
Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2013)
Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on Riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 37–45 (2015)
Minello, G., Rossi, L., Torsello, A.: Can a quantum walk tell which is which? A study of quantum walk-based graph similarity. Entropy 21(3), 328 (2019)
Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, pp. 101–106. ACM (2005)
Rodola, E., et al.: Shrec’17: deformable shape retrieval with missing parts. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, Lisbon, Portugal, pp. 23–24 (2017)
Rodolà, E., Cosmo, L., Bronstein, M.M., Torsello, A., Cremers, D.: Partial functional correspondence. Comput. Graph. Forum 36, 222–236 (2017). Wiley Online Library
Rossi, L., Severini, S., Torsello, A.: The average mixing matrix signature. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 474–484. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_42
Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38221-5_11
Rossi, L., Torsello, A., Hancock, E.R.: Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence. Phys. Rev. E 91(2), 022815 (2015)
Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph symmetries through quantum Jensen-Shannon divergence. Phys. Rev. E 88(3), 032806 (2013)
Rostami, R., Bashiri, F.S., Rostami, B., Yu, Z.: A survey on data-driven 3D shape descriptors. Comput. Graph. Forum 38, 356–393 (2019). Wiley Online Library
Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 225–233. Eurographics Association (2007)
Salti, S., Tombari, F., di Stefano, L.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383–1392 (2009). Wiley Online Library
Verma, N., Boyer, E., Verbeek, J.: Feastnet: feature-steered graph convolutions for 3D shape analysis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Vestner, M., et al.: Efficient deformable shape correspondence via kernel matching. In: 2017 International Conference on 3D Vision (3DV), pp. 517–526. IEEE (2017)
Acknowledgements
Luca Cosmo was supported by the ERC Starting Grant No. 802554 (SPECGEO) and the ERC Consolidator grant No. 724228 (LEMAN).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Cosmo, L., Minello, G., Bronstein, M., Rossi, L., Torsello, A. (2020). The Average Mixing Kernel Signature. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-58565-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58564-8
Online ISBN: 978-3-030-58565-5
eBook Packages: Computer ScienceComputer Science (R0)