Abstract
We improve one-stage visual grounding by addressing current limitations on grounding long and complex queries. Existing one-stage methods encode the entire language query as a single sentence embedding vector, e.g., taking the embedding from BERT or the hidden state from LSTM. This single vector representation is prone to overlooking the detailed descriptions in the query. To address this query modeling deficiency, we propose a recursive sub-query construction framework, which reasons between image and query for multiple rounds and reduces the referring ambiguity step by step. We show our new one-stage method obtains \(5.0\%, 4.5\%, 7.5\%, 12.8\%\) absolute improvements over the state-of-the-art one-stage approach on ReferItGame, RefCOCO, RefCOCO+, and RefCOCOg, respectively. In particular, superior performances on longer and more complex queries validates the effectiveness of our query modeling. Code is available at https://github.com/zyang-ur/ReSC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bajaj, M., Wang, L., Sigal, L.: G3raphground: Graph-based language grounding. In: ICCV (2019)
Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural networks. In: EMNLP, pp. 740–750 (2014)
Chen, K., Kovvuri, R., Gao, J., Nevatia, R.: MSRC: multimodal spatial regression with semantic context for phrase grounding. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 23–31. ACM (2017)
Chen, K., Kovvuri, R., Nevatia, R.: Query-guided regression network with context policy for phrase grounding. In: ICCV (2017)
Chen, X., Ma, L., Chen, J., Jie, Z., Liu, W., Luo, J.: Real-time referring expression comprehension by single-stage grounding network. arXiv preprint arXiv:1812.03426 (2018)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. In: Advances in Neural Information Processing Systems, pp. 6594–6604 (2017)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dogan, P., Sigal, L., Gross, M.: Neural sequential phrase grounding (seqground). In: CVPR (2019)
Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: ICLR (2017)
Escalante, H.J., et al.: The segmented and annotated IAPR TC-12 benchmark. CVIU (2010)
Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 28, 2222–2232 (2016)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: CVPR (2017)
Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., Darrell, T.: Natural language object retrieval. In: CVPR (2016)
Hudson, D.A., Manning, C.D.: Compositional attention networks for machine reasoning. In: ICLR (2018)
Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referitgame: referring to objects in photographs of natural scenes. In: EMNLP (2014)
Li, J., et al.: Deep attribute-preserving metric learning for natural language object retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 181–189. ACM (2017)
Li, S., Xiao, T., Li, H., Zhou, B., Yue, D., Wang, X.: Person search with natural language description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1970–1979 (2017)
Liao, Y., et al.: A real-time cross-modality correlation filtering method for referring expression comprehension. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10880–10889 (2020)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lin, Z., et al.: A structured self-attentive sentence embedding. In: ICLR (2017)
Liu, C., Lin, Z., Shen, X., Yang, J., Lu, X., Yuille, A.: Recurrent multimodal interaction for referring image segmentation. In: ICCV (2017)
Liu, D., Zhang, H., Wu, F., Zha, Z.J.: Learning to assemble neural module tree networks for visual grounding. In: ICCV (2019)
Liu, J., Wang, L., Yang, M.H.: Referring expression generation and comprehension via attributes. In: ICCV (2017)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, X., Wang, Z., Shao, J., Wang, X., Li, H.: Improving referring expression grounding with cross-modal attention-guided erasing. In: CVPR (2019)
Luo, G., et al.: Multi-task collaborative network for joint referring expression comprehension and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10034–10043 (2020)
Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR (2016)
Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_48
Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: Visual reasoning with a general conditioning layer. In: AAAI (2018)
Plummer, B.A., Kordas, P., Kiapour, M.H., Zheng, S., Piramuthu, R., Lazebnik, S.: Conditional image-text embedding networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 258–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_16
Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. Int. J. Comput. Vis. (2017)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., Schiele, B.: Grounding of textual phrases in images by reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 817–834. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_49
Sadhu, A., Chen, K., Nevatia, R.: Zero-shot grounding of objects from natural language queries. In: ICCV (2019)
Tieleman, T., Hinton, G.: Lecture 6.5-RMSPROP: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks Mach. Learn. 4, 26–30 (2012)
Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013)
Wang, L., Li, Y., Huang, J., Lazebnik, S.: Learning two-branch neural networks for image-text matching tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2018)
Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving image-text embeddings. In: CVPR (2016)
Wang, P., Wu, Q., Cao, J., Shen, C., Gao, L., Hengel, A.V.D.: Neighbourhood watch: referring expression comprehension via language-guided graph attention networks. In: CVPR (2019)
Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language processing. arXiv preprint arXiv:1910.03771 (2019)
Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)
Yang, S., Li, G., Yu, Y.: Cross-modal relationship inference for grounding referring expressions. In: CVPR (2019)
Yang, S., Li, G., Yu, Y.: Dynamic graph attention for referring expression comprehension. In: ICCV (2019)
Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: ICCV (2019)
Yu, L., et al.: Mattnet: Modular attention network for referring expression comprehension. In: CVPR (2018)
Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5
Yu, L., Tan, H., Bansal, M., Berg, T.L.: A joint speaker-listener-reinforcer model for referring expressions. In: CVPR (2017)
Zhang, H., Niu, Y., Chang, S.F.: Grounding referring expressions in images by variational context. In: CVPR (2018)
Zhuang, B., Wu, Q., Shen, C., Reid, I., van den Hengel, A.: Parallel attention: a unified framework for visual object discovery through dialogs and queries. In: CVPR (2018)
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26
Acknowledgment
This work is supported in part by NSF awards IIS-1704337, IIS-1722847, and IIS-1813709, Twitch Fellowship, as well as our corporate sponsors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Z., Chen, T., Wang, L., Luo, J. (2020). Improving One-Stage Visual Grounding by Recursive Sub-query Construction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-58568-6_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58567-9
Online ISBN: 978-3-030-58568-6
eBook Packages: Computer ScienceComputer Science (R0)