Skip to main content

Improving One-Stage Visual Grounding by Recursive Sub-query Construction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12359))

Included in the following conference series:

  • 4950 Accesses

Abstract

We improve one-stage visual grounding by addressing current limitations on grounding long and complex queries. Existing one-stage methods encode the entire language query as a single sentence embedding vector, e.g., taking the embedding from BERT or the hidden state from LSTM. This single vector representation is prone to overlooking the detailed descriptions in the query. To address this query modeling deficiency, we propose a recursive sub-query construction framework, which reasons between image and query for multiple rounds and reduces the referring ambiguity step by step. We show our new one-stage method obtains \(5.0\%, 4.5\%, 7.5\%, 12.8\%\) absolute improvements over the state-of-the-art one-stage approach on ReferItGame, RefCOCO, RefCOCO+, and RefCOCOg, respectively. In particular, superior performances on longer and more complex queries validates the effectiveness of our query modeling. Code is available at https://github.com/zyang-ur/ReSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajaj, M., Wang, L., Sigal, L.: G3raphground: Graph-based language grounding. In: ICCV (2019)

    Google Scholar 

  2. Chen, D., Manning, C.D.: A fast and accurate dependency parser using neural networks. In: EMNLP, pp. 740–750 (2014)

    Google Scholar 

  3. Chen, K., Kovvuri, R., Gao, J., Nevatia, R.: MSRC: multimodal spatial regression with semantic context for phrase grounding. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 23–31. ACM (2017)

    Google Scholar 

  4. Chen, K., Kovvuri, R., Nevatia, R.: Query-guided regression network with context policy for phrase grounding. In: ICCV (2017)

    Google Scholar 

  5. Chen, X., Ma, L., Chen, J., Jie, Z., Liu, W., Luo, J.: Real-time referring expression comprehension by single-stage grounding network. arXiv preprint arXiv:1812.03426 (2018)

  6. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  7. De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. In: Advances in Neural Information Processing Systems, pp. 6594–6604 (2017)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Dogan, P., Sigal, L., Gross, M.: Neural sequential phrase grounding (seqground). In: CVPR (2019)

    Google Scholar 

  10. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: ICLR (2017)

    Google Scholar 

  11. Escalante, H.J., et al.: The segmented and annotated IAPR TC-12 benchmark. CVIU (2010)

    Google Scholar 

  12. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 28, 2222–2232 (2016)

    Article  MathSciNet  Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  14. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships in referential expressions with compositional modular networks. In: CVPR (2017)

    Google Scholar 

  15. Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., Darrell, T.: Natural language object retrieval. In: CVPR (2016)

    Google Scholar 

  16. Hudson, D.A., Manning, C.D.: Compositional attention networks for machine reasoning. In: ICLR (2018)

    Google Scholar 

  17. Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referitgame: referring to objects in photographs of natural scenes. In: EMNLP (2014)

    Google Scholar 

  18. Li, J., et al.: Deep attribute-preserving metric learning for natural language object retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 181–189. ACM (2017)

    Google Scholar 

  19. Li, S., Xiao, T., Li, H., Zhou, B., Yue, D., Wang, X.: Person search with natural language description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1970–1979 (2017)

    Google Scholar 

  20. Liao, Y., et al.: A real-time cross-modality correlation filtering method for referring expression comprehension. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10880–10889 (2020)

    Google Scholar 

  21. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  22. Lin, Z., et al.: A structured self-attentive sentence embedding. In: ICLR (2017)

    Google Scholar 

  23. Liu, C., Lin, Z., Shen, X., Yang, J., Lu, X., Yuille, A.: Recurrent multimodal interaction for referring image segmentation. In: ICCV (2017)

    Google Scholar 

  24. Liu, D., Zhang, H., Wu, F., Zha, Z.J.: Learning to assemble neural module tree networks for visual grounding. In: ICCV (2019)

    Google Scholar 

  25. Liu, J., Wang, L., Yang, M.H.: Referring expression generation and comprehension via attributes. In: ICCV (2017)

    Google Scholar 

  26. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  27. Liu, X., Wang, Z., Shao, J., Wang, X., Li, H.: Improving referring expression grounding with cross-modal attention-guided erasing. In: CVPR (2019)

    Google Scholar 

  28. Luo, G., et al.: Multi-task collaborative network for joint referring expression comprehension and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10034–10043 (2020)

    Google Scholar 

  29. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR (2016)

    Google Scholar 

  30. Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_48

    Chapter  Google Scholar 

  31. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: Film: Visual reasoning with a general conditioning layer. In: AAAI (2018)

    Google Scholar 

  32. Plummer, B.A., Kordas, P., Kiapour, M.H., Zheng, S., Piramuthu, R., Lazebnik, S.: Conditional image-text embedding networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 258–274. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_16

    Chapter  Google Scholar 

  33. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. Int. J. Comput. Vis. (2017)

    Google Scholar 

  34. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  35. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  36. Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., Schiele, B.: Grounding of textual phrases in images by reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 817–834. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_49

    Chapter  Google Scholar 

  37. Sadhu, A., Chen, K., Nevatia, R.: Zero-shot grounding of objects from natural language queries. In: ICCV (2019)

    Google Scholar 

  38. Tieleman, T., Hinton, G.: Lecture 6.5-RMSPROP: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks Mach. Learn. 4, 26–30 (2012)

    Google Scholar 

  39. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104, 154–171 (2013)

    Article  Google Scholar 

  40. Wang, L., Li, Y., Huang, J., Lazebnik, S.: Learning two-branch neural networks for image-text matching tasks. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  41. Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving image-text embeddings. In: CVPR (2016)

    Google Scholar 

  42. Wang, P., Wu, Q., Cao, J., Shen, C., Gao, L., Hengel, A.V.D.: Neighbourhood watch: referring expression comprehension via language-guided graph attention networks. In: CVPR (2019)

    Google Scholar 

  43. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language processing. arXiv preprint arXiv:1910.03771 (2019)

  44. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  45. Yang, S., Li, G., Yu, Y.: Cross-modal relationship inference for grounding referring expressions. In: CVPR (2019)

    Google Scholar 

  46. Yang, S., Li, G., Yu, Y.: Dynamic graph attention for referring expression comprehension. In: ICCV (2019)

    Google Scholar 

  47. Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: ICCV (2019)

    Google Scholar 

  48. Yu, L., et al.: Mattnet: Modular attention network for referring expression comprehension. In: CVPR (2018)

    Google Scholar 

  49. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5

    Chapter  Google Scholar 

  50. Yu, L., Tan, H., Bansal, M., Berg, T.L.: A joint speaker-listener-reinforcer model for referring expressions. In: CVPR (2017)

    Google Scholar 

  51. Zhang, H., Niu, Y., Chang, S.F.: Grounding referring expressions in images by variational context. In: CVPR (2018)

    Google Scholar 

  52. Zhuang, B., Wu, Q., Shen, C., Reid, I., van den Hengel, A.: Parallel attention: a unified framework for visual object discovery through dialogs and queries. In: CVPR (2018)

    Google Scholar 

  53. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is supported in part by NSF awards IIS-1704337, IIS-1722847, and IIS-1813709, Twitch Fellowship, as well as our corporate sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyuan Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4072 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Chen, T., Wang, L., Luo, J. (2020). Improving One-Stage Visual Grounding by Recursive Sub-query Construction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58568-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58567-9

  • Online ISBN: 978-3-030-58568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics