Skip to main content

Learning Object Relation Graph and Tentative Policy for Visual Navigation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

  • 4846 Accesses

Abstract

Target-driven visual navigation aims at navigating an agent towards a given target based on the observation of the agent. In this task, it is critical to learn informative visual representation and robust navigation policy. Aiming to improve these two components, this paper proposes three complementary techniques, object relation graph (ORG), trial-driven imitation learning (IL), and a memory-augmented tentative policy network (TPN). ORG improves visual representation learning by integrating object relationships, including category closeness and spatial correlations, e.g., a TV usually co-occurs with a remote spatially. Both Trial-driven IL and TPN underlie robust navigation policy, instructing the agent to escape from deadlock states, such as looping or being stuck. Specifically, trial-driven IL is a type of supervision used in policy network training, while TPN, mimicking the IL supervision in unseen environment, is applied in testing. Experiment in the artificial environment AI2-Thor validates that each of the techniques is effective. When combined, the techniques bring significantly improvement over baseline methods in navigation effectiveness and efficiency in unseen environments. We report 22.8% and 23.5% increase in success rate and Success weighted by Path Length (SPL), respectively. The code is available at https://github.com/xiaobaishu0097/ECCV-VN.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, P., et al.: Vision-and-language navigation: interpreting visually-grounded navigation instructions in real environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3674–3683 (2018)

    Google Scholar 

  2. Battaglia, P., Pascanu, R., Lai, M., Rezende, D.J., et al.: Interaction networks for learning about objects, relations and physics. In: Advances in Neural Information Processing Systems, pp. 4502–4510 (2016)

    Google Scholar 

  3. Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Man Cybern. 19(5), 1179–1187 (1989)

    Article  Google Scholar 

  4. Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)

    Article  Google Scholar 

  5. Chen, K., et al.: A behavioral approach to visual navigation with graph localization networks. arXiv preprint arXiv:1903.00445 (2019)

  6. Chen, T., Gupta, S., Gupta, A.: Learning exploration policies for navigation. arXiv preprint arXiv:1903.01959 (2019)

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Dissanayake, M.G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A solution to the simultaneous localization and map building (slam) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)

    Article  Google Scholar 

  9. Fang, K., Toshev, A., Fei-Fei, L., Savarese, S.: Scene memory transformer for embodied agents in long-horizon tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 538–547 (2019)

    Google Scholar 

  10. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping and planning for visual navigation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2616–2625 (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)

  13. Kahn, G., Villaflor, A., Ding, B., Abbeel, P., Levine, S.: Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8. IEEE (2018)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Kolve, E., et al.: AI2-THOR: An Interactive 3D Environment for Visual AI. arXiv (2017)

    Google Scholar 

  16. Mirowski, P., et al.: Learning to navigate in complex environments. arXiv preprint arXiv:1611.03673 (2016)

  17. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937 (2016)

    Google Scholar 

  18. Mousavian, A., Toshev, A., Fišer, M., Košecká, J., Wahid, A., Davidson, J.: Visual representations for semantic target driven navigation. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8846–8852. IEEE (2019)

    Google Scholar 

  19. Oriolo, G., Vendittelli, M., Ulivi, G.: On-line map building and navigation for autonomous mobile robots. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2900–2906. IEEE (1995)

    Google Scholar 

  20. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In: Proceedings of the 2014 Cence on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  22. Savinov, N., Dosovitskiy, A., Koltun, V.: Semi-parametric topological memory for navigation. arXiv preprint arXiv:1803.00653 (2018)

  23. Sepulveda, G., Niebles, J.C., Soto, A.: A deep learning based behavioral approach to indoor autonomous navigation. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4646–4653. IEEE (2018)

    Google Scholar 

  24. Shen, W.B., Xu, D., Zhu, Y., Guibas, L.J., Fei-Fei, L., Savarese, S.: Situational fusion of visual representation for visual navigation. arXiv preprint arXiv:1908.09073 (2019)

  25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  26. Wang, X., et al.: Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6629–6638 (2019)

    Google Scholar 

  27. Wortsman, M., Ehsani, K., Rastegari, M., Farhadi, A., Mottaghi, R.: Learning to learn how to learn: self-adaptive visual navigation using meta-learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6750–6759 (2019)

    Google Scholar 

  28. Wu, Y., Wu, Y., Tamar, A., Russell, S., Gkioxari, G., Tian, Y.: Bayesian relational memory for semantic visual navigation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2769–2779 (2019)

    Google Scholar 

  29. Yang, W., Wang, X., Farhadi, A., Gupta, A., Mottaghi, R.: Visual semantic navigation using scene priors. arXiv preprint arXiv:1810.06543 (2018)

  30. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3357–3364. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

Dr. Liang Zheng is the recipient of Australian Research Council Discovery Early Career Award (DE200101283) funded by the Australian Government. This research was also supported by the Australia Research Council Centre of Excellence for Robotics Vision (CE140100016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 23625 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, H., Yu, X., Zheng, L. (2020). Learning Object Relation Graph and Tentative Policy for Visual Navigation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics