Skip to main content

Colorization of Depth Map via Disentanglement

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

Abstract

Vision perception is one of the most important components for a computer or robot to understand the surrounding scene and achieve autonomous applications. However, most of the vision models are based on the RGB sensors, which in general are vulnerable to the insufficient lighting condition. In contrast, the depth camera, another widely-used visual sensor, is capable of perceiving 3D information and being more robust to the lack of illumination, but unable to obtain appearance details of the surrounding environment compared to RGB cameras. To make RGB-based vision models workable for the low-lighting scenario, prior methods focus on learning the colorization on depth maps captured by depth cameras, such that the vision models can still achieve reasonable performance on colorized depth maps. However, the colorization produced in this manner is usually unrealistic and constrained to the specific vision model, thus being hard to generalize for other tasks to use. In this paper, we propose a depth map colorization method via disentangling appearance and structure factors, so that our model could 1) learn depth-invariant appearance features from an appearance reference and 2) generate colorized images by combining a given depth map and the appearance feature obtained from any reference. We conduct extensive experiments to show that our colorization results are more realistic and diverse in comparison to several image translation baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bo, L., Ren, X., Fox, D.: Unsupervised feature learning for rgb-d based object recognition. In: Desai, J., Dudek G., Khatib, O., Kumar, V. (eds). Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg (2013) https://doi.org/10.1007/978-3-319-00065-7_27

  2. Carlucci, F.M., Russo, P., Caputo, B.: \({(DE)}^2{CO}\): Deep depth colorization. IEEE Robot. Autom. Lett. 3(3), 2386–2393 (2018)

    Article  Google Scholar 

  3. Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep learning for robust rgb-d object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 681–687. IEEE (2015)

    Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems. pp. 2672–2680 (2014)

    Google Scholar 

  5. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from rgb-d images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_23

    Chapter  Google Scholar 

  6. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems. pp. 6626–6637 (2017)

    Google Scholar 

  7. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color! joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. (ToG) 35(4), 1–11 (2016)

    Article  Google Scholar 

  8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125–1134 (2017)

    Google Scholar 

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  12. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 35–51 (2018)

    Google Scholar 

  13. Lee, H.Y., et al.: DRIT++: Diverse image-to-image translation via disentangled representations. Int. J. Comput. Vis. 128(10), 2402–2417 (2020). https://doi.org/10.1007/s11263-019-01284-z

    Article  Google Scholar 

  14. Li, Y., Zhang, J., Cheng, Y., Huang, K., Tan, T.: Df\(^2\)net: Discriminative feature learning and fusion network for rgb-d indoor scene classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  15. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  16. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2794–2802 (2017)

    Google Scholar 

  17. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: Scenenet rgb-d: Can 5m synthetic images beat generic imagenet pre-training on indoor segmentation? In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2678–2687 (2017)

    Google Scholar 

  18. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  19. Schwarz, M., Schulz, H., Behnke, S.: Rgb-d object recognition and pose estimation based on pre-trained convolutional neural network features. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). pp. 1329–1335. IEEE (2015)

    Google Scholar 

  20. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  21. Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 567–576 (2015)

    Google Scholar 

  22. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9 (2015)

    Google Scholar 

  23. Yuan, Y., Xiong, Z., Wang, Q.: Acm: Adaptive cross-modal graph convolutional neural networks for rgb-d scene recognition. Proc. AAAI Conf. Artifi. Intell. 33, 9176–9184 (2019)

    Google Scholar 

  24. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2223–2232 (2017)

    Google Scholar 

  25. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems. pp. 465–476 (2017)

    Google Scholar 

Download references

Acknowledgment

This project is supported by MOST109-2636-E-009–018, MOST-109–2634-F-009–020, and MOST-109–2634-F-009–015. Thanks to the National Center for High Performance Computing for computation facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 61265 KB)

Supplementary material 2 (pdf 4097 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, CS., You, Z., Huang, CC., Tsai, YH., Chiu, WC. (2020). Colorization of Depth Map via Disentanglement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics