Skip to main content

Localizing the Common Action Among a Few Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

  • 4198 Accesses

Abstract

This paper strives to localize the temporal extent of an action in a long untrimmed video. Where existing work leverages many examples with their start, their ending, and/or the class of the action during training time, we propose few-shot common action localization. The start and end of an action in a long untrimmed video is determined based on just a hand-full of trimmed video examples containing the same action, without knowing their common class label. To address this task, we introduce a new 3D convolutional network architecture able to align representations from the support videos with the relevant query video segments. The network contains: (i) a mutual enhancement module to simultaneously complement the representation of the few trimmed support videos and the untrimmed query video; (ii) a progressive alignment module that iteratively fuses the support videos into the query branch; and (iii) a pairwise matching module to weigh the importance of different support videos. Evaluation of few-shot common action localization in untrimmed videos containing a single or multiple action instances demonstrates the effectiveness and general applicability of our proposal.

Code: https://github.com/PengWan-Yang/commonLocalization

P. Yang and V. T. Hu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bojanowski, P., et al.: Weakly supervised action labeling in videos under ordering constraints. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, Tinne (eds.) ECCV 2014. LNCS, vol. 8693, pp. 628–643. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_41

    Chapter  Google Scholar 

  2. Buch, S., Escorcia, V., Shen, C., Ghanem, B., Carlos Niebles, J.: Sst: single-stream temporal action proposals. In: CVPR (2017)

    Google Scholar 

  3. Caba Heilbron, F., Escorcia, V., Ghanem, B., Car-los Niebles, J.: Activitynet: a large-scale video benchmark for human activity understanding. In: CVPR (2015)

    Google Scholar 

  4. Chen, D.L., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: ACL (2011)

    Google Scholar 

  5. Dai, X., Singh, B., Zhang, G., Davis, L.S., Chen, Y.Q: Temporal context network for activity localization in videos. In: ICCV (2017)

    Google Scholar 

  6. Damen, D.: Scaling egocentric vision: the epic-kitchens dataset. In: ECCV (2018)

    Google Scholar 

  7. Dong, X., Zheng, L., Ma, F., Yang, Y., Meng, D.: Few-example object detection with model communication. PAMI 41(7), 1641–1654 (2018)

    Article  Google Scholar 

  8. Duchenne, O., Laptev, I., Sivic, J., Bach, F., Ponce, J.: Automatic annotation of human actions in video. In ICCV (2009)

    Google Scholar 

  9. Escorcia, V., Caba Heilbron, F., Niebles, J.C., Ghanem, B.: DAPs: deep action proposals for action understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 768–784. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_47

    Chapter  Google Scholar 

  10. Feng, Y., Ma, L., Liu, W., Zhang, T., Luo, J.: Video re-localization. In: ECCV (2018)

    Google Scholar 

  11. Gao, J., Chen, K., Nevatia, R.: Ctap: Complementary temporal action proposal generation. In: ECCV (2018)

    Google Scholar 

  12. Gao, J., Yang, Z., Sun, C., Chen, K., Nevatia, R.: Turn tap: temporal unit regression network for temporal action proposals. In: ICCV (2017)

    Google Scholar 

  13. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, Tinne (eds.) ECCV 2014. LNCS, vol. 8695, pp. 505–520. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_33

    Chapter  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  16. Hu, T., Mettes, P., Huang, J.-H., Snoek, C.G.M.: SILCO: show a few images, localize the common object. In: ICCV(2019)

    Google Scholar 

  17. Idrees, H., et al.: The THUMOS challenge on action recognition for videos “in the wild”. In: CVIU (2017)

    Google Scholar 

  18. Jain, M., Ghodrati, A., Snoek, C.G.M.: ActionBytes: learning from trimmed videos to localize actions. In: CVPR (2020)

    Google Scholar 

  19. Jain, M., van Gemert, J.C., Mensink, T., Snoek, C.G.M.: Objects2action: classifying and localizing actions without any video example. In: ICCV (2015)

    Google Scholar 

  20. Kalogeiton, V., Weinzaepfel, P., Ferrari, V., Schmid, C.: Joint learning of object and action detectors. In: ICCV (2017)

    Google Scholar 

  21. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  22. Kay, W., et al.: The kinetics human action video dataset. arXiv (2017)

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)

    Google Scholar 

  24. Kuehne, H., Richard, A., Gall, J.: A hybrid RNN-HMM approach for weakly supervised temporal action segmentation. arXiv (2019)

    Google Scholar 

  25. Singh, K.K., Lee, Y.J.: Hide-and-seek: forcing a network to be meticulous for weakly-supervised object and action localization. In: ICCV (2017)

    Google Scholar 

  26. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: boundary sensitive network for temporal action proposal generation. In: ECCV (2018)

    Google Scholar 

  27. Ma, S., Sigal, L., Sclaroff, S.: Learning activity progression in LSTMS for activity detection and early detection. In: CVPR (2016)

    Google Scholar 

  28. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 2579–2605 (2008)

    Google Scholar 

  29. Mettes, P., Snoek, C.G.M.: Spatial-aware object embeddings for zero-shot localization and classification of actions. In: ICCV (2017)

    Google Scholar 

  30. Nguyen, P., Liu, T., Prasad, G., Han, G.: Weakly supervised action localization by sparse temporal pooling network. In: CVPR (2018)

    Google Scholar 

  31. Nguyen, P.X., Ramanan, D., Charless C.F.: Weakly-supervised action localization with background modeling. In: ICCV (2019)

    Google Scholar 

  32. Oneata, D., Verbeek, J., Cordelia, S.: Action and event recognition with fisher vectors on a compact feature set. In: ICCV (2013)

    Google Scholar 

  33. Pasze, A., et al.: Automatic differentiation in pytorch. In: NeurIPS (2017)

    Google Scholar 

  34. Paul, S., Roy, S., Roy-Chowdhury, A.K.: W-talc: Weakly-supervised temporal activity localization and classification. In: ECCV (2018)

    Google Scholar 

  35. Sawatzky, J., Garbade, M., Gall, J.: Ex paucis plura: learning affordance segmentation from very few examples. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 169–184. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_13

    Chapter  Google Scholar 

  36. Shaban, A., Rahimi, A., Gould, S., Boots, B., Hartley, R.: Learning to find common objects across image collections. In: ICCV (2019)

    Google Scholar 

  37. Shou, Z., Wang, D., Chang, S.-F.: Temporal action localization in untrimmed videos via multi-stage CNNS. In: CVPR (2016)

    Google Scholar 

  38. Singh, B., Marks, T.K., Jones, M., Tuzel, O., Shao, M.: A multi-stream bi-directional recurrent neural network for fine-grained action detection. In: CVPR (2016)

    Google Scholar 

  39. Soomro, K., Shah, M.: Unsupervised action discovery and localization in videos. In: ICCV (2017)

    Google Scholar 

  40. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)

    Google Scholar 

  41. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  42. Wang, L., Qiao, Y., Tang, X.: Action recognition and detection by combining motion and appearance features. THUMOS14 Action Recogn. Challenge, 1(2), 2 (2014)

    Google Scholar 

  43. Wang, L., Xiong, Y., Lin, D., Van Gool, L.: Untrimmednets for weakly supervised action recognition and detection. In: CVPR (2017)

    Google Scholar 

  44. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  45. Xu, H., Das, A., Saenko, K.: R-C3D: Region convolutional 3D network for temporal activity detection. In: ICCV (2017)

    Google Scholar 

  46. Yang, H., He, X., Porikli, F.: One-shot action localization by learning sequence matching network. In: CVPR (2018)

    Google Scholar 

  47. Yang, J., Yuan, J.: Common action discovery and localization in unconstrained videos. In: ICCV (2017)

    Google Scholar 

  48. Yeung, S., Russakovsky, O., Mori, G., Fei-Fei, L.: End-to-end learning of action detection from frame glimpses in videos. In: CVPR (2016)

    Google Scholar 

  49. Zhang, Z., Zhao, Z., Lin, Z., Song, J., Cai, D.: Localizing unseen activities in video via image query. In: IJCAI (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengwan Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 233 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, P., Hu, V.T., Mettes, P., Snoek, C.G.M. (2020). Localizing the Common Action Among a Few Videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics