Abstract
Often the best performing deep neural models are ensembles of multiple base-level networks, nevertheless, ensemble learning with respect to domain adaptive person re-ID remains unexplored. In this paper, we propose a multiple expert brainstorming network (MEB-Net) for domain adaptive person re-ID, opening up a promising direction about model ensemble problem under unsupervised conditions. MEB-Net adopts a mutual learning strategy, where multiple networks with different architectures are pre-trained within a source domain as expert models equipped with specific features and knowledge, while the adaptation is then accomplished through brainstorming (mutual learning) among expert models. MEB-Net accommodates the heterogeneity of experts learned with different architectures and enhances discrimination capability of the adapted re-ID model, by introducing a regularization scheme about authority of experts. Extensive experiments on large-scale datasets (Market-1501 and DukeMTMC-reID) demonstrate the superior performance of MEB-Net over the state-of-the-arts. Code is available at https://github.com/YunpengZhai/MEB-Net.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anil, R., Pereyra, G., Passos, A., Ormandi, R., Dahl, G.E., Hinton, G.E.: Large scale distributed neural network training through online distillation. arXiv preprint arXiv:1804.03235 (2018)
Bagherinezhad, H., Horton, M., Rastegari, M., Farhadi, A.: Label refinery: improving ImageNet classification through label progression. arXiv preprint arXiv:1805.02641 (2018)
Chen, T., Goodfellow, I., Shlens, J.: Net2Net: accelerating learning via knowledge transfer. arXiv preprint arXiv:1511.05641 (2015)
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: IEEE CVPR (2009)
Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: IEEE CVPR (2018)
Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. TOMCCAP 14(4), 83:1–83:18 (2018)
Fan, H., Zheng, L., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. CoRR abs/1705.10444 (2017)
Fu, Y., Wei, Y., Wang, G., Zhou, Y., Shi, H., Huang, T.S.: Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 6112–6121 (2019)
Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. arXiv preprint arXiv:2001.01526 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017)
Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39
Jia, M., Zhai, Y., Lu, S., Ma, S., Zhang, J.: A similarity inference metric for RGB-infrared cross-modality person re-identification. In: IJCAI 2020, June 2020
Jin, X., Lan, C., Zeng, W., Chen, Z.: Global distance-distributions separation for unsupervised person re-identification. arXiv preprint arXiv:2006.00752 (2020)
Jin, X., Lan, C., Zeng, W., Chen, Z., Zhang, L.: Style normalization and restitution for generalizable person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3143–3152 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, Y.J., Lin, C.S., Lin, Y.B., Wang, Y.C.F.: Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 7919–7929 (2019)
Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., Li, L.J.: Learning from noisy labels with distillation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1910–1918 (2017)
Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015
Lin, S., Li, H., Li, C., Kot, A.C.: Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification. In: BMVC (2018)
Liu, J., Zha, Z.J., Chen, D., Hong, R., Wang, M.: Adaptive transfer network for cross-domain person re-identification. In: IEEE CVPR (2019)
Liu, Z., Wang, D., Lu, H.: Stepwise metric promotion for unsupervised video person re-identification. In: IEEE ICCV, pp. 2448–2457 (2017)
Lv, J., Wang, X.: Cross-dataset person re-identification using similarity preserved generative adversarial networks. In: Liu, W., Giunchiglia, F., Yang, B. (eds.) KSEM, pp. 171–183 (2018)
Peng, P., et al.: Unsupervised cross-dataset transfer learning for person re-identification. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Qi, L., Wang, L., Huo, J., Zhou, L., Shi, Y., Gao, Y.: A novel unsupervised camera-aware domain adaptation framework for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 8080–8089 (2019)
Ristani, E., Solera, F., Zou, R.S., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: IEEE ECCV Workshops (2016)
Shen, Z., He, Z., Xue, X.: Meal: Multi-model ensemble via adversarial learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4886–4893 (2019)
Singh, S., Hoiem, D., Forsyth, D.: Swapout: Learning an ensemble of deep architectures. In: Advances in Neural Information Processing Systems, pp. 28–36 (2016)
Song, L., et al.: Unsupervised domain adaptive re-identification: Theory and practice. CoRR abs/1807.11334 (2018)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)
Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using dropconnect. In: International Conference on Machine Learning, pp. 1058–1066 (2013)
Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: IEEE CVPR (2018)
Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: IEEE CVPR (2018)
Wu, J., Liao, S., Lei, Z., Wang, X., Yang, Y., Li, S.Z.: Clustering and dynamic sampling based unsupervised domain adaptation for person re-identification. In: IEEE ICME, pp. 886–891 (2019)
Wu, Y., Lin, Y., Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Exploit the unknown gradually: one-shot video-based person re-identification by stepwise learning. In: IEEE CVPR (2018)
Yang, F., et al.: Part-aware progressive unsupervised domain adaptation for person re-identification. IEEE Trans. Multimed. (2020)
Yang, F., Yan, K., Lu, S., Jia, H., Xie, X., Gao, W.: Attention driven person re-identification. Pattern Recogn. 86, 143–155 (2019)
Ye, M., Ma, A.J., Zheng, L., Li, J., Yuen, P.C.: Dynamic label graph matching for unsupervised video re-identification. In: IEEE ICCV, pp. 5152–5160 (2017)
Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4133–4141 (2017)
Zhai, Y., Lu, S., Ye, Q., Shan, X., Chen, J., Ji, R., Tian, Y.: Ad-cluster: augmented discriminative clustering for domain adaptive person re-identification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Zhang, X., Cao, J., Shen, C., You, M.: Self-training with progressive augmentation for unsupervised cross-domain person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 8222–8231 (2019)
Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4320–4328 (2018)
Zheng, L., et al.: MARS: a video benchmark for large-scale person re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 868–884. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_52
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: The IEEE International Conference on Computer Vision (ICCV), December 2015
Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: IEEE ICCV (2017)
Zhong, Z., Zheng, L., Li, S., Yang, Y.: Generalizing a person retrieval model hetero- and homogeneously. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 176–192. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_11
Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: exemplar memory for domain adaptive person re-identification. In: IEEE CVPR (2019)
Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: CamStyle: a novel data augmentation method for person re-identification. IEEE TIP 28(3), 1176–1190 (2019)
Acknowledgement
This work is partially supported by grants from the National Key R&D Program of China under grant 2017YFB1002400, the National Natural Science Foundation of China (NSFC) under contract No. 61825101, U1611461 and 61836012.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhai, Y., Ye, Q., Lu, S., Jia, M., Ji, R., Tian, Y. (2020). Multiple Expert Brainstorming for Domain Adaptive Person Re-Identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-58571-6_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58570-9
Online ISBN: 978-3-030-58571-6
eBook Packages: Computer ScienceComputer Science (R0)