Skip to main content

ALRe: Outlier Detection for Guided Refinement

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

  • 3489 Accesses

Abstract

Guided refinement is a popular procedure of various image post-processing applications. It produces output image based on input and guided images. Input images are usually flawed estimates containing kinds of noises and outliers, which undermine the edge consistency between input and guided images. As improvements, they are refined into output images with similar intensities of input images and consistent edges of guided images. However, outliers are usually untraceable and simply treated as zero-mean noises, limiting the quality of such refinement. In this paper, we propose a general outlier detection method for guided refinement. We assume local linear relationship between output and guided images to express the expected edge consistency, based on which, the outlier likelihoods of input pixels are measured. The metric is termed as ALRe (anchored linear residual) since it is essentially the residual of local linear regression with an equality constraint exerted on the measured pixel. Valuable features of the ALRe are discussed. Its effectiveness is proven by applications and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)

    Article  Google Scholar 

  2. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23(3), 664–672 (2004)

    Article  Google Scholar 

  3. Liu, W., Chen, X., Yang, J., Wu, Q.: Robust color guided depth map restoration. IEEE Trans. Image Process. 26(1), 315–327 (2016)

    Article  MathSciNet  Google Scholar 

  4. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  5. Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 504–511 (2012)

    Article  Google Scholar 

  6. Park, J., Kim, H., Tai, Y.W., Brown, M.S., Kweon, I.: High quality depth map upsampling for 3D-TOF cameras. In: International Conference on Computer Vision, pp. 1623–1630 (2011)

    Google Scholar 

  7. Yang, J., Ye, X., Li, K., Hou, C., Wang, Y.: Color-guided depth recovery from RGB-D data using an adaptive autoregressive model. IEEE Trans. Image Process. 23(8), 3443–3458 (2014)

    Article  MathSciNet  Google Scholar 

  8. Li, Z., Zheng, J., Zhu, Z., Yao, W., Wu, S.: Weighted guided image filtering. IEEE Trans. Image Process. 24(1), 120–129 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Dai, L., Yuan, M., Zhang, F., Zhang, X.: Fully connected guided image filtering. In: IEEE International Conference on Computer Vision, pp. 352–360 (2015)

    Google Scholar 

  10. Ochotorena, C.N., Yamashita, Y.: Anisotropic guided filtering. IEEE Trans. Image Process. 29, 1397–1412 (2019)

    Article  MathSciNet  Google Scholar 

  11. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  12. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  13. Berman, D., Avidan, S.: Non-local image dehazing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  14. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  15. Ma, Z., He, K., Wei, Y., Sun, J., Wu, E.: Constant time weighted median filtering for stereo matching and beyond. In: IEEE International Conference on Computer Vision, pp. 49–56 (2013)

    Google Scholar 

  16. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. 34(1), 1–14 (2014)

    Article  Google Scholar 

  17. Guo, X., Li, Y., Ma, J., Ling, H.: Mutually guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 1283–1290 (2018)

    Google Scholar 

  18. Li, Y., Huang, J.B., Ahuja, N., Yang, M.H.: Joint image filtering with deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1909–1923 (2019)

    Article  Google Scholar 

  19. Zhu, M., He, B., Liu, J., Yu, J.: Boosting dark channel dehazing via weighted local constant assumption. Sig. Process. 171, 107453 (2020)

    Article  Google Scholar 

  20. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Conference on Computer Vision and Pattern Recognition, p. I (2003)

    Google Scholar 

  21. Scharstein, D., et al.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_3

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2020YFB1312800 and in part by the National Natural Science Foundation of China under Grant U1909206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junzhi Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, M., Gao, Z., Yu, J., He, B., Liu, J. (2020). ALRe: Outlier Detection for Guided Refinement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics