Skip to main content

Consistency Guided Scene Flow Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12352))

Included in the following conference series:

  • 4144 Accesses

Abstract

Consistency Guided Scene Flow Estimation (CGSF) is a self-supervised framework for the joint reconstruction of 3D scene structure and motion from stereo video. The model takes two temporal stereo pairs as input, and predicts disparity and scene flow. The model self-adapts at test time by iteratively refining its predictions. The refinement process is guided by a consistency loss, which combines stereo and temporal photo-consistency with a geometric term that couples disparity and 3D motion. To handle inherent modeling error in the consistency loss (e.g. Lambertian assumptions) and for better generalization, we further introduce a learned, output refinement network, which takes the initial predictions, the loss, and the gradient as input, and efficiently predicts a correlated output update. In multiple experiments, including ablation studies, we show that the proposed model can reliably predict disparity and scene flow in challenging imagery, achieves better generalization than the state-of-the-art, and adapts quickly and robustly to unseen domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aleotti, F., Poggi, M., Tosi, F., Mattoccia, S.: Learning end-to-end scene flow by distilling single tasks knowledge. In: AAAI (2020)

    Google Scholar 

  2. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems, pp. 3981–3989 (2016)

    Google Scholar 

  3. Basha, T., Moses, Y., Kiryati, N.: Multi-view scene flow estimation: a view centered variational approach. Int. J. Comput. Vis. 101(1), 6–21 (2013)

    Article  MathSciNet  Google Scholar 

  4. Casser, V., Pirk, S., Mahjourian, R., Angelova, A.: Depth prediction without the sensors: leveraging structure for unsupervised learning from monocular videos. In: AAAI (2019)

    Google Scholar 

  5. Chang, J., Chen, Y.: Pyramid stereo matching network. In: CVPR (2018)

    Google Scholar 

  6. Chen, Y., Schmid, C., Sminchisescu, C.: Self-supervised learning with geometric constraints in monocular video: connecting flow, depth, and camera. In: ICCV (2019)

    Google Scholar 

  7. Clark, R., Bloesch, M., Czarnowski, J., Leutenegger, S., Davison, A.J.: LS-Net: Learning to solve nonlinear least squares for monocular stereo. arXiv preprint arXiv:1809.02966 (2018)

  8. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  9. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR (2017)

    Google Scholar 

  10. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV (2019)

    Google Scholar 

  11. Guo, X., Li, H., Yi, S., Ren, J., Wang, X.: Learning monocular depth by distilling cross-domain stereo networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 506–523. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_30

    Chapter  Google Scholar 

  12. Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. In: ICCV (2007)

    Google Scholar 

  13. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  14. Ilg, E., Saikia, T., Keuper, M., Brox, T.: Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 626–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_38

    Chapter  Google Scholar 

  15. Jiang, H., Sun, D., Jampani, V., Lv, Z., Learned-Miller, E., Kautz, J.: SENSE: a shared encoder network for scene-flow estimation. In: ICCV (2019)

    Google Scholar 

  16. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: ICCV (2017)

    Google Scholar 

  17. Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep learning for monocular depth map prediction. In: CVPR (2017)

    Google Scholar 

  18. Lai, H.Y., Tsai, Y.H., Chiu, W.C.: Bridging stereo matching and optical flow via spatiotemporal correspondence. In: CVPR (2019)

    Google Scholar 

  19. Li, K., Malik, J.: Learning to optimize. arXiv preprint arXiv:1606.01885 (2016)

  20. Liu, P., Lyu, M., King, I., Xu, J.: SelFlow: self-supervised learning of optical flow. In: CVPR (2019)

    Google Scholar 

  21. Lv, Z., Dellaert, F., Rehg, J.M., Geiger, A.: Taking a deeper look at the inverse compositional algorithm. In: CVPR (2019)

    Google Scholar 

  22. Ma, W.C., Wang, S., Hu, R., Xiong, Y., Urtasun, R.: Deep rigid instance scene flow. In: CVPR (2019)

    Google Scholar 

  23. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR (2016)

    Google Scholar 

  24. Meister, S., Hur, J., Roth, S.: UnFlow: unsupervised learning of optical flow with a bidirectional census loss. In: AAAI (2018)

    Google Scholar 

  25. Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow. In: ISPRS Workshop on Image Sequence Analysis (ISA) (2015)

    Google Scholar 

  26. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS J. Photogramm. Remote Sens. (JPRS) 140, 60–76 (2018)

    Article  Google Scholar 

  27. Pang, J., et al.: Zoom and learn: generalizing deep stereo matching to novel domains. In: CVPR (2018)

    Google Scholar 

  28. Poggi, M., Pallotti, D., Tosi, F., Mattoccia, S.: Guided stereo matching. In: CVPR (2019)

    Google Scholar 

  29. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)

    Google Scholar 

  30. Tang, C., Tan, P.: BA-Net: Dense bundle adjustment network. arXiv preprint arXiv:1806.04807 (2018)

  31. Tonioni, A., Poggi, M., Mattoccia, S., Di Stefano, L.: Unsupervised adaptation for deep stereo. In: ICCV (2017)

    Google Scholar 

  32. Tonioni, A., Rahnama, O., Joy, T., Stefano, L.D., Ajanthan, T., Torr, P.H.: Learning to adapt for stereo. In: CVPR (2019)

    Google Scholar 

  33. Tonioni, A., Tosi, F., Poggi, M., Mattoccia, S., Stefano, L.D.: Real-time self-adaptive deep stereo. In: CVPR (2019)

    Google Scholar 

  34. Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow. In: ICCV (1999)

    Google Scholar 

  35. Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: ICCV (2013)

    Google Scholar 

  36. Wang, Y., Wang, P., Yang, Z., Luo, C., Yang, Y., Xu, W.: UnOS: unified unsupervised optical-flow and stereo-depth estimation by watching videos. In: CVPR (2019)

    Google Scholar 

  37. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  38. Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene flow from sparse or dense stereo data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 739–751. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_56

    Chapter  Google Scholar 

  39. Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: CVPR (2018)

    Google Scholar 

  40. Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: GA-Net: guided aggregation net for end-to-end stereo matching. In: CVPR (2019)

    Google Scholar 

  41. Zhong, Y., Li, H., Dai, Y.: Open-world stereo video matching with deep RNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 104–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_7

    Chapter  Google Scholar 

  42. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2140 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Van Gool, L., Schmid, C., Sminchisescu, C. (2020). Consistency Guided Scene Flow Estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics