Abstract
Graphic design is essential for visual communication with layouts being fundamental to composing attractive designs. Layout generation differs from pixel-level image synthesis and is unique in terms of the requirement of mutual relations among the desired components. We propose a method for design layout generation that can satisfy user-specified constraints. The proposed neural design network (NDN) consists of three modules. The first module predicts a graph with complete relations from a graph with user-specified relations. The second module generates a layout from the predicted graph. Finally, the third module fine-tunes the predicted layout. Quantitative and qualitative experiments demonstrate that the generated layouts are visually similar to real design layouts. We also construct real designs based on predicted layouts for a better understanding of the visual quality. Finally, we demonstrate a practical application on layout recommendation.
H.-Y. Lee—Work done during their internship at Google Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bylinskii, Z., et al.: Learning visual importance for graphic designs and data visualizations. In: UIST (2017)
Cheng, Y.C., Lee, H.Y., Sun, M., Yang, M.H.: Controllable image synthesis via SegVAE. In: ECCV (2020)
Damera-Venkata, N., Bento, J., O’Brien-Strain, E.: Probabilistic document model for automated document composition. In: DocEng (2011)
Deka, B., et al.: Rico: a mobile app dataset for building data-driven design applications. In: UIST (2017)
Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: NeurIPS (2015)
Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. In: ICNN (1996)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)
Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: IJCNN (2005)
Gupta, T., Schwenk, D., Farhadi, A., Hoiem, D., Kembhavi, A.: Imagine this! scripts to compositions to videos. In: ECCV (2018)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NeurIPS (2017)
Hong, S., Yang, D., Choi, J., Lee, H.: Inferring semantic layout for hierarchical text-to-image synthesis. In: CVPR (2018)
Hurst, N., Li, W., Marriott, K.: Review of automatic document formatting. In: DocEng (2009)
Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-ENN: Deep learning on spatio-temporal graphs. In: CVPR (2016)
Jin, W., Yang, K., Barzilay, R., Jaakkola, T.: Learning multimodal graph-to-graph translation for molecular optimization. In: ICLR (2019)
Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: CVPR (2018)
Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: LayoutVAE: stochastic scene layout generation from a label set. In: ICCV (2019)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
Kumar, R., Talton, J.O., Ahmad, S., Klemmer, S.R.: Bricolage: example-based retargeting for web design. In: SIGCHI (2011)
Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: LayoutGAN: generating graphic layouts with wireframe discriminators. In: ICLR (2019)
Li, Y., Jiang, L., Yang, M.H.: Controllable and progressive image extrapolation. arXiv preprint arXiv:1912.11711 (2019)
Liu, T.F., Craft, M., Situ, J., Yumer, E., Mech, R., Kumar, R.: Learning design semantics for mobile apps. In: UIST (2018)
O’Donovan, P., Agarwala, A., Hertzmann, A.: Learning layouts for single-pagegraphic designs. TVCG 20, 1200–1213 (2014)
Pang, X., Cao, Y., Lau, R.W., Chan, A.B.: Directing user attention via visual flow on web designs. ACM TOG 35, 1–11 (2016). (Proc. SIGGRAPH)
Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. arXiv preprint arXiv:1906.00446 (2019)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. TNN 20, 61–80 (2008)
Tabata, S., Yoshihara, H., Maeda, H., Yokoyama, K.: Automatic layout generation for graphical design magazines. In: SIGGRAPH (2019)
Tan, F., Feng, S., Ordonez, V.: Text2scene: Generating abstract scenes from textual descriptions. In: CVPR (2019)
Tseng, H.Y., Lee, H.Y., Jiang, L., Yang, W., Yang, M.H.: RetrieveGAN: image synthesis via differentiable patch retrieval. In: ECCV (2020)
Zheng, X., Qiao, X., Cao, Y., Lau, R.W.: Content-aware generative modeling of graphic design layouts. In: SIGGRAPH (2019)
Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph generation. In: ECCV (2018)
Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: NeurIPS (2017)
Acknowledgements
This work is supported in part by the NSF CAREER Grant \(\#1149783\).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, HY. et al. (2020). Neural Design Network: Graphic Layout Generation with Constraints. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-58580-8_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58579-2
Online ISBN: 978-3-030-58580-8
eBook Packages: Computer ScienceComputer Science (R0)