Skip to main content

TopoGAN: A Topology-Aware Generative Adversarial Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12348))

Included in the following conference series:

Abstract

Existing generative adversarial networks (GANs) focus on generating realistic images based on CNN-derived image features, but fail to preserve the structural properties of real images. This can be fatal in applications where the underlying structure (e.g.., neurons, vessels, membranes, and road networks) of the image carries crucial semantic meaning. In this paper, we propose a novel GAN model that learns the topology of real images, i.e., connectedness and loopy-ness. In particular, we introduce a new loss that bridges the gap between synthetic image distribution and real image distribution in the topological feature space. By optimizing this loss, the generator produces images with the same structural topology as real images. We also propose new GAN evaluation metrics that measure the topological realism of the synthetic images. We show in experiments that our method generates synthetic images with realistic topology. We also highlight the increased performance that our method brings to downstream tasks such as segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The persistence diagram definition does not require the input to be a distance transform. It can be an arbitrary scalar function defined on a topological space.

  2. 2.

    There are more technical reasons for adding the diagonal line into the diagram, related to the stability of the metric. See [12].

References

  1. Abbasi-Sureshjani, S., Smit-Ockeloen, I., Bekkers, E., Dashtbozorg, B., ter Haar Romeny, B.: Automatic detection of vascular bifurcations and crossings in retinal images using orientation scores. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 189–192, April 2016. https://doi.org/10.1109/ISBI.2016.7493241

  2. Abbasi-Sureshjani, S., Smit-Ockeloen, I., Zhang, J., Ter Haar Romeny, B.: Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images. In: Kamel, M., Campilho, A. (eds.) Image Analysis and Recognition, pp. 325–334. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  3. Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(1), 218–252 (2017)

    MathSciNet  Google Scholar 

  4. Arganda-Carreras, I., et al.: Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanat. 9, 142 (2015). https://doi.org/10.3389/fnana.2015.00142. https://www.frontiersin.org/article/10.3389/fnana.2015.00142

  5. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  6. Bonneel, N., Rabin, J., Peyré, G., Pfister, H.: Sliced and radon Wasserstein Barycenters of measures. J. Math. Imaging Vis. 51(1), 22–45 (2015)

    Article  MathSciNet  Google Scholar 

  7. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2018)

    Google Scholar 

  8. Brüel-Gabrielsson, R., Nelson, B.J., Dwaraknath, A., Skraba, P., Guibas, L.J., Carlsson, G.: A topology layer for machine learning. arXiv preprint arXiv:1905.12200 (2019)

  9. Carriere, M., Cuturi, M., Oudot, S.: Sliced Wasserstein kernel for persistence diagrams. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 664–673. JMLR. org (2017)

    Google Scholar 

  10. Chen, C., Ni, X., Bai, Q., Wang, Y.: A topological regularizer for classifiers via persistent homology. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2573–2582 (2019)

    Google Scholar 

  11. Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P.: Explicit topological priors for deep-learning based image segmentation using persistent homology. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_2

    Chapter  Google Scholar 

  12. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  13. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have l p-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Article  MathSciNet  Google Scholar 

  14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  15. Miccai challenge on circuit reconstruction from electron microscopy images. https://cremi.org/

  16. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    Google Scholar 

  17. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean distance transform algorithms: a comparative survey. ACM Comput. Surv. (CSUR) 40(1), 1–44 (2008)

    Article  Google Scholar 

  18. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Zhang, K., Tao, D.: Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2427–2436 (2019)

    Google Scholar 

  19. Ghafoorian, M., Nugteren, C., Baka, N., Booij, O., Hofmann, M.: EL-GAN: embedding loss driven generative adversarial networks for lane detection. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 256–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_15

    Chapter  Google Scholar 

  20. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  21. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  23. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

    Chapter  Google Scholar 

  24. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Guyon, I., et al., (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 6626–6637. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf

  25. Hofer, C., Kwitt, R., Niethammer, M., Dixit, M.: Connectivity-optimized representation learning via persistent homology. In: International Conference on Machine Learning, pp. 2751–2760 (2019)

    Google Scholar 

  26. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Advances in Neural Information Processing Systems, pp. 1634–1644 (2017)

    Google Scholar 

  27. Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000). https://doi.org/10.1109/42.845178

    Article  Google Scholar 

  28. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: Advances in Neural Information Processing Systems, pp. 5658–5669 (2019)

    Google Scholar 

  29. Hwang, J.J., Ke, T.W., Shi, J., Yu, S.X.: Adversarial structure matching for structured prediction tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4056–4065 (2019)

    Google Scholar 

  30. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  31. Khrulkov, V., Oseledets, I.: Geometry score: a method for comparing generative adversarial networks. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 2621–2629. PMLR, Stockholmsmässan, Stockholm Sweden, 10–15 July 2018

    Google Scholar 

  32. Kossaifi, J., Tran, L., Panagakis, Y., Pantic, M.: GAGAN: geometry-aware generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 878–887 (2018)

    Google Scholar 

  33. Kusano, G., Hiraoka, Y., Fukumizu, K.: Persistence weighted Gaussian kernel for topological data analysis. In: International Conference on Machine Learning, pp. 2004–2013 (2016)

    Google Scholar 

  34. Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Póczos, B.: MMD GAN: towards deeper understanding of moment matching network. In: Advances in Neural Information Processing Systems, pp. 2203–2213 (2017)

    Google Scholar 

  35. Lim, J.H., Ye, J.C.: Geometric GAN. arXiv preprint arXiv:1705.02894 (2017)

  36. Liu, H., Gu, X., Samaras, D.: Wasserstein GAN with quadratic transport cost. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  37. Liu, H., Xianfeng, G., Samaras, D.: A two-step computation of the exact GAN Wasserstein distance. In: International Conference on Machine Learning, pp. 3165–3174 (2018)

    Google Scholar 

  38. Liu, S., Bousquet, O., Chaudhuri, K.: Approximation and convergence properties of generative adversarial learning. In: Advances in Neural Information Processing Systems, pp. 5545–5553 (2017)

    Google Scholar 

  39. Luc, P., Couprie, C., Chintala, S., Verbeek, J.: Semantic segmentation using adversarial networks. arXiv preprint arXiv:1611.08408 (2016)

  40. Mescheder, L., Nowozin, S., Geiger, A.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning (2018)

    Google Scholar 

  41. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Machine Learning (2018)

    Google Scholar 

  42. Mosinska, A., Márquez-Neila, P., Koziński, M., Fua, P.: Beyond the pixel-wise loss for topology-aware delineation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  43. Mroueh, Y., Sercu, T.: Fisher GAN. In: Advances in Neural Information Processing Systems, pp. 2513–2523 (2017)

    Google Scholar 

  44. Mroueh, Y., Sercu, T., Goel, V.: McGan: mean and covariance feature matching GAN. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 2527–2535. PMLR, International Convention Centre, Sydney, Australia, 06–11 August 2017

    Google Scholar 

  45. Munkres, J.R.: Elements of Algebraic Topology. CRC Press, Boca Raton (2018)

    Google Scholar 

  46. Ni, X., Quadrianto, N., Wang, Y., Chen, C.: Composing tree graphical models with persistent homology features for clustering mixed-type data. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2622–2631. JMLR. org (2017)

    Google Scholar 

  47. Nowozin, S., Cseke, B., Tomioka, R.: F-GAN: training generative neural samplers using variational divergence minimization. In: Advances in Neural Information Processing Systems, pp. 271–279 (2016)

    Google Scholar 

  48. Owen, C.G., et al.: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest. Ophthalmol. Vis. Sci. 50(5), 2004–2010 (2009). https://doi.org/10.1167/iovs.08-3018

  49. Peyré, G., Cuturi, M.: Computational optimal transport foundations and trends. Mach. Learn. 11(2019), 355 (1803)

    Google Scholar 

  50. Qi, G.J., Zhang, L., Hu, H., Edraki, M., Wang, J., Hua, X.S.: Global versus localized generative adversarial nets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1517–1525 (2018)

    Google Scholar 

  51. Qin, Y., et al.: AirwayNet: a voxel-connectivity aware approach for accurate airway segmentation using convolutional neural networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 212–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_24

    Chapter  Google Scholar 

  52. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  53. Ramamurthy, K.N., Varshney, K., Mody, K.: Topological data analysis of decision boundaries with application to model selection. In: International Conference on Machine Learning, pp. 5351–5360 (2019)

    Google Scholar 

  54. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4741–4748 (2015)

    Google Scholar 

  55. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  56. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  57. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: learning a generative model from a single natural image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4570–4580 (2019)

    Google Scholar 

  58. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  59. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  60. Thanh-Tung, H., Tran, T., Venkatesh, S.: Improving generalization and stability of generative adversarial networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  61. Tyleček, R., Šára, R.: Spatial pattern templates for recognition of objects with regular structure. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 364–374. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40602-7_39

    Chapter  Google Scholar 

  62. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer Science & Business Media, Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  63. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  64. Wu, P., et al.: Optimal topological cycles and their application in cardiac trabeculae restoration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 80–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_7

    Chapter  Google Scholar 

  65. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363 (2019)

    Google Scholar 

  66. Zhao, Q., Wang, Y.: Learning metrics for persistence-based summaries and applications for graph classification. In: Advances in Neural Information Processing Systems, pp. 9859–9870 (2019)

    Google Scholar 

  67. Zhao, Q., Ye, Z., Chen, C., Wang, Y.: Persistence enhanced graph neural network. In: International Conference on Artificial Intelligence and Statistics, pp. 2896–2906 (2020)

    Google Scholar 

  68. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Acknowledgement

Fan Wang and Chao Chen’s research was partially supported by NSF IIS-1855759, CCF-1855760 and IIS-1909038. Huidong Liu and Dimitris Samaras were partially supported from the Partner University Fund, the SUNY2020 Infrastructure Transportation Security Center, and a gift from Adobe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2630 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, F., Liu, H., Samaras, D., Chen, C. (2020). TopoGAN: A Topology-Aware Generative Adversarial Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12348. Springer, Cham. https://doi.org/10.1007/978-3-030-58580-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58580-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58579-2

  • Online ISBN: 978-3-030-58580-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics