Skip to main content

NoiseRank: Unsupervised Label Noise Reduction with Dependence Models

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

  • 4393 Accesses

Abstract

Label noise is increasingly prevalent in datasets acquired from noisy channels. Existing approaches that detect and remove label noise generally rely on some form of supervision, which is not scalable and error-prone. In this paper, we propose NoiseRank, for unsupervised label noise reduction using Markov Random Fields (MRF). We construct a dependence model to estimate the posterior probability of an instance being incorrectly labeled given the dataset, and rank instances based on their estimated probabilities. Our method i) does not require supervision from ground-truth labels or priors on label or noise distribution, ii) is interpretable by design, enabling transparency in label noise removal, iii) is agnostic to classifier architecture/optimization framework and content modality. These advantages enable wide applicability in real noise settings, unlike prior works constrained by one or more conditions. NoiseRank improves state-of-the-art classification on Food101-N (\(\sim \)20% noise), and is effective on high noise Clothing-1M (\(\sim \)40% noise).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arazo, E., Ortego, D., Albert, P., O’Connor, N., Mcguinness, K.: Unsupervised label noise modeling and loss correction. In: International Conference on Machine Learning, pp. 312–321 (2019)

    Google Scholar 

  2. Corbiere, C., Ben-Younes, H., Ramé, A., Ollion, C.: Leveraging weakly annotated data for fashion image retrieval and label prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2268–2274 (2017)

    Google Scholar 

  3. Delany, S.J., Cunningham, P.: An analysis of case-base editing in a spam filtering system. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 128–141. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_11

    Chapter  Google Scholar 

  4. Franco, A., Maltoni, D., Nanni, L.: Data pre-processing through reward-punishment editing. Pattern Anal. Appl. 13(4), 367–381 (2010)

    Article  MathSciNet  Google Scholar 

  5. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2013)

    Article  Google Scholar 

  6. Gates, G.: The reduced nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory 18(3), 431–433 (1972)

    Article  Google Scholar 

  7. Guo, S., et al.: Curriculumnet: weakly supervised learning from large-scale web images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–150 (2018)

    Google Scholar 

  8. Han, J., Luo, P., Wang, X.: Deep self-learning from noisy labels. In: 2019 IEEE International Conference on Computer Vision, pp. 5138–5147. IEEE (2019)

    Google Scholar 

  9. Hart, P.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory 14(3), 515–516 (1968)

    Article  Google Scholar 

  10. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning, pp. 2309–2318 (2018)

    Google Scholar 

  11. Jindal, I., Pressel, D., Lester, B., Nokleby, M.: An effective label noise model for DNN text classification. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 3246–3256 (2019)

    Google Scholar 

  12. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734 (2017)

  13. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. 1(6), 90–95 (2013)

    Google Scholar 

  14. Lallich, S., Muhlenbach, F., Zighed, D.A.: Improving classification by removing or relabeling mislabeled instances. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 5–15. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48050-1_3

    Chapter  MATH  Google Scholar 

  15. Lee, K.H., He, X., Zhang, L., Yang, L.: Cleannet: transfer learning for scalable image classifier training with label noise. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5447–5456 (2018)

    Google Scholar 

  16. Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to learn from noisy labeled data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5051–5059 (2019)

    Google Scholar 

  17. Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’05, pp. 472–479. ACM, New York (2005). https://doi.org/10.1145/1076034.1076115

  18. Muhlenbach, F., Lallich, S., Zighed, D.A.: Identifying and handling mislabelled instances. J. Intell. Inf. Syst. 22(1), 89–109 (2004)

    Article  Google Scholar 

  19. Nanni, L., Franco, A.: Reduced reward-punishment editing for building ensembles of classifiers. Exp. Syst. Appl. 38(3), 2395–2400 (2011)

    Article  Google Scholar 

  20. Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.: Making deep neural networks robust to label noise: a loss correction approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1952 (2017)

    Google Scholar 

  21. Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C., et al.: Estimating the support of a high-dimensional distribution (1999)

    Google Scholar 

  22. Pouyanfar, S., et al.: A survey on deep learning: algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 51(5), 92 (2019)

    Article  Google Scholar 

  23. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. In: International Conference on Learning Representations (2015)

    Google Scholar 

  24. Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N., Wojatzki, M.: Measuring the reliability of hate speech annotations: the case of the European refugee crisis. arXiv preprint arXiv:1701.08118 (2017)

  25. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5552–5560. IEEE (2018)

    Google Scholar 

  26. Thomee, B., et al.: Yfcc100m: The new data in multimedia research. arXiv preprint arXiv:1503.01817 (2015)

  27. Thongkam, J., Xu, G., Zhang, Y., Huang, F.: Support vector machine for outlier detection in breast cancer survivability prediction. In: Ishikawa, Y., et al. (eds.) APWeb 2008. LNCS, vol. 4977, pp. 99–109. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89376-9_10

    Chapter  Google Scholar 

  28. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from noisy large-scale datasets with minimal supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 839–847 (2017)

    Google Scholar 

  29. Vondrick, C., Patterson, D., Ramanan, D.: Efficiently scaling up crowdsourced video annotation. Int. J. Comput. Vis. 101(1), 184–204 (2013)

    Article  Google Scholar 

  30. Waseem, Z.: Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter. In: Proceedings of the First Workshop on NLP and Computational Social Science, pp. 138–142 (2016)

    Google Scholar 

  31. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)

    Article  MathSciNet  Google Scholar 

  32. Xia, X., et al.: Are anchor points really indispensable in label-noise learning? In: NeurIPS (2019)

    Google Scholar 

  33. Xia, Y., Cao, X., Wen, F., Hua, G., Sun, J.: Learning discriminative reconstructions for unsupervised outlier removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1519 (2015)

    Google Scholar 

  34. Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2691–2699 (2015)

    Google Scholar 

  35. Xiaojin, Z., Zoubin, G.: Learning from labeled and unlabeled data with label propagation. Technical Report, Technical Report CMU-CALD-02-107, Carnegie Mellon University (2002)

    Google Scholar 

  36. Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546 (2019)

  37. Yalniz, I.Z., Manmatha, R.: Dependence models for searching text in document images. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 49–63 (2019). https://doi.org/10.1109/TPAMI.2017.2780108

  38. Yi, K., Wu, J.: Probabilistic end-to-end noise correction for learning with noisy labels. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2019)

    Google Scholar 

  39. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  40. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zeki Yalniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, K., Donmez, P., Luo, E., Liu, Y., Yalniz, I.Z. (2020). NoiseRank: Unsupervised Label Noise Reduction with Dependence Models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics