Abstract
Label noise is increasingly prevalent in datasets acquired from noisy channels. Existing approaches that detect and remove label noise generally rely on some form of supervision, which is not scalable and error-prone. In this paper, we propose NoiseRank, for unsupervised label noise reduction using Markov Random Fields (MRF). We construct a dependence model to estimate the posterior probability of an instance being incorrectly labeled given the dataset, and rank instances based on their estimated probabilities. Our method i) does not require supervision from ground-truth labels or priors on label or noise distribution, ii) is interpretable by design, enabling transparency in label noise removal, iii) is agnostic to classifier architecture/optimization framework and content modality. These advantages enable wide applicability in real noise settings, unlike prior works constrained by one or more conditions. NoiseRank improves state-of-the-art classification on Food101-N (\(\sim \)20% noise), and is effective on high noise Clothing-1M (\(\sim \)40% noise).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arazo, E., Ortego, D., Albert, P., O’Connor, N., Mcguinness, K.: Unsupervised label noise modeling and loss correction. In: International Conference on Machine Learning, pp. 312–321 (2019)
Corbiere, C., Ben-Younes, H., Ramé, A., Ollion, C.: Leveraging weakly annotated data for fashion image retrieval and label prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2268–2274 (2017)
Delany, S.J., Cunningham, P.: An analysis of case-base editing in a spam filtering system. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 128–141. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_11
Franco, A., Maltoni, D., Nanni, L.: Data pre-processing through reward-punishment editing. Pattern Anal. Appl. 13(4), 367–381 (2010)
Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2013)
Gates, G.: The reduced nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory 18(3), 431–433 (1972)
Guo, S., et al.: Curriculumnet: weakly supervised learning from large-scale web images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–150 (2018)
Han, J., Luo, P., Wang, X.: Deep self-learning from noisy labels. In: 2019 IEEE International Conference on Computer Vision, pp. 5138–5147. IEEE (2019)
Hart, P.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory 14(3), 515–516 (1968)
Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning, pp. 2309–2318 (2018)
Jindal, I., Pressel, D., Lester, B., Nokleby, M.: An effective label noise model for DNN text classification. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 3246–3256 (2019)
Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. arXiv preprint arXiv:1702.08734 (2017)
Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. 1(6), 90–95 (2013)
Lallich, S., Muhlenbach, F., Zighed, D.A.: Improving classification by removing or relabeling mislabeled instances. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 5–15. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-48050-1_3
Lee, K.H., He, X., Zhang, L., Yang, L.: Cleannet: transfer learning for scalable image classifier training with label noise. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5447–5456 (2018)
Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to learn from noisy labeled data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5051–5059 (2019)
Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’05, pp. 472–479. ACM, New York (2005). https://doi.org/10.1145/1076034.1076115
Muhlenbach, F., Lallich, S., Zighed, D.A.: Identifying and handling mislabelled instances. J. Intell. Inf. Syst. 22(1), 89–109 (2004)
Nanni, L., Franco, A.: Reduced reward-punishment editing for building ensembles of classifiers. Exp. Syst. Appl. 38(3), 2395–2400 (2011)
Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.: Making deep neural networks robust to label noise: a loss correction approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1952 (2017)
Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C., et al.: Estimating the support of a high-dimensional distribution (1999)
Pouyanfar, S., et al.: A survey on deep learning: algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 51(5), 92 (2019)
Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. In: International Conference on Learning Representations (2015)
Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N., Wojatzki, M.: Measuring the reliability of hate speech annotations: the case of the European refugee crisis. arXiv preprint arXiv:1701.08118 (2017)
Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5552–5560. IEEE (2018)
Thomee, B., et al.: Yfcc100m: The new data in multimedia research. arXiv preprint arXiv:1503.01817 (2015)
Thongkam, J., Xu, G., Zhang, Y., Huang, F.: Support vector machine for outlier detection in breast cancer survivability prediction. In: Ishikawa, Y., et al. (eds.) APWeb 2008. LNCS, vol. 4977, pp. 99–109. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89376-9_10
Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from noisy large-scale datasets with minimal supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 839–847 (2017)
Vondrick, C., Patterson, D., Ramanan, D.: Efficiently scaling up crowdsourced video annotation. Int. J. Comput. Vis. 101(1), 184–204 (2013)
Waseem, Z.: Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter. In: Proceedings of the First Workshop on NLP and Computational Social Science, pp. 138–142 (2016)
Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)
Xia, X., et al.: Are anchor points really indispensable in label-noise learning? In: NeurIPS (2019)
Xia, Y., Cao, X., Wen, F., Hua, G., Sun, J.: Learning discriminative reconstructions for unsupervised outlier removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1519 (2015)
Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2691–2699 (2015)
Xiaojin, Z., Zoubin, G.: Learning from labeled and unlabeled data with label propagation. Technical Report, Technical Report CMU-CALD-02-107, Carnegie Mellon University (2002)
Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546 (2019)
Yalniz, I.Z., Manmatha, R.: Dependence models for searching text in document images. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 49–63 (2019). https://doi.org/10.1109/TPAMI.2017.2780108
Yi, K., Wu, J.: Probabilistic end-to-end noise correction for learning with noisy labels. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Sharma, K., Donmez, P., Luo, E., Liu, Y., Yalniz, I.Z. (2020). NoiseRank: Unsupervised Label Noise Reduction with Dependence Models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-58583-9_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58582-2
Online ISBN: 978-3-030-58583-9
eBook Packages: Computer ScienceComputer Science (R0)