Abstract
We propose an attention-based networks for transferring motions between arbitrary objects. Given a source image(s) and a driving video, our networks animate the subject in the source images according to the motion in the driving video. In our attention mechanism, dense similarities between the learned keypoints in the source and the driving images are computed in order to retrieve the appearance information from the source images. Taking a different approach from the well-studied warping based models, our attention-based model has several advantages. By reassembling non-locally searched pieces from the source contents, our approach can produce more realistic outputs. Furthermore, our system can make use of multiple observations of the source appearance (e.g. front and sides of faces) to make the results more accurate. To reduce the training-testing discrepancy of the self-supervised learning, a novel cross-identity training scheme is additionally introduced. With the training scheme, our networks is trained to transfer motions between different subjects, as in the real testing scenario. Experimental results validate that our method produces visually pleasing results in various object domains, showing better performances compared to previous works.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amos, B., Ludwiczuk, B., Satyanarayanan, M., et al.: OpenFace: A general-purpose face recognition library with mobile applications. CMU School of Computer Science (June 2016)
Balakrishnan, G., Zhao, A., Dalca, A.V., Durand, F., Guttag, J.: Synthesizing images of humans in unseen poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8340–8348 (2018)
Bansal, A., Ma, S., Ramanan, D., Sheikh, Y.: Recycle-GAN: unsupervised video retargeting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_8
Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1021–1030 (2017)
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)
Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5933–5942 (2019)
Chung, J.S., Nagrani, A., Zisserman, A.: VoxCeleb2: deep speaker recognition. Proc. Interspeech 2018, 1086–1090 (2018)
Denton, E., Fergus, R.: Stochastic video generation with a learned prior. arXiv preprint arXiv:1802.07687 (2018)
Denton, E.L., et al.: Unsupervised learning of disentangled representations from video. In: Advances in Neural Information Processing Systems, pp. 4414–4423 (2017)
Ding, H., Sricharan, K., Chellappa, R.: ExprGAN: facial expression editing with controllable expression intensity. In: 32nd AAAI Conference on Artificial Intelligence (2018)
Ebert, F., Finn, C., Lee, A.X., Levine, S.: Self-supervised visual planning with temporal skip connections. arXiv preprint arXiv:1710.05268 (2017)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Ha, S., Kersner, M., Kim, B., Seo, S., Kim, D.: MarioNETte: few-shot face reenactment preserving identity of unseen targets. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)
Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks through conditional image generation. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 4016–4027. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7657-unsupervised-learning-of-object-landmarks-through-conditional-image-generation.pdf
Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional inverse graphics network. In: Advances in Neural Information Processing Systems, pp. 2539–2547 (2015)
Lathuilière, S., Sangineto, E., Siarohin, A., Sebe, N.: Attention-based fusion for multi-source human image generation. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 439–448 (2020)
Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. In: Advances in Neural Information Processing Systems, pp. 406–416 (2017)
Ma, L., Sun, Q., Georgoulis, S., Van Gool, L., Schiele, B., Fritz, M.: Disentangled person image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 99–108 (2018)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)
Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9226–9235 (2019)
Oh, S.W., Lee, S., Lee, J.Y., Kim, S.J.: Onion-peel networks for deep video completion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4403–4412 (2019)
Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value clipping. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2830–2839 (2017)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: Animating arbitrary objects via deep motion transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2377–2386 (2019)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Advances in Neural Information Processing Systems, vol. 32, pp. 7137–7147. Curran Associates, Inc. (2019). http://papers.nips.cc/paper/8935-first-order-motion-model-for-image-animation.pdf
Siarohin, A., Sangineto, E., Lathuilière, S., Sebe, N.: Deformable gans for pose-based human image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3408–3416 (2018)
Tran, L., Yin, X., Liu, X.: Disentangled representation learning GAN for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1415–1424 (2017)
Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1526–1535 (2018)
Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., Lee, H.: Learning to generate long-term future via hierarchical prediction. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3560–3569. JMLR.org (2017)
Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances In Neural Information Processing Systems, pp. 613–621 (2016)
Wang, T.C., Liu, M.Y., Tao, A., Liu, G., Catanzaro, B., Kautz, J.: Few-shot video-to-video synthesis. In: Advances in Neural Information Processing Systems, pp. 5014–5025 (2019)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)
Wang, T.C., et al.: Video-to-video synthesis. In: Advances in Neural Information Processing Systems, pp. 1152–1164 (2018)
Wiles, O., Koepke, A.S., Zisserman, A.: X2Face: a network for controlling face generation using images, audio, and pose codes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_41
Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9459–9468 (2019)
Zhao, L., Peng, X., Tian, Yu., Kapadia, M., Metaxas, D.: Learning to forecast and refine residual motion for image-to-video generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 403–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_24
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgement
This work was conducted by Center for Applied Research in Artificial Intelligence (CARAI) grant funded by DAPA and ADD (UD190031RD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mov 11168 KB)
Supplementary material 3 (mov 37775 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jeon, S., Nam, S., Oh, S.W., Kim, S.J. (2020). Cross-Identity Motion Transfer for Arbitrary Objects Through Pose-Attentive Video Reassembling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-58586-0_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58585-3
Online ISBN: 978-3-030-58586-0
eBook Packages: Computer ScienceComputer Science (R0)